Essentials for Biochemical Modeling

Herbert M. Sauro
University of Washington
Seattle, WA

PASI 2013 Edition

Ambrosius Publishing

Copyright © 2013 Herbert M. Sauro. All rights reserved.
First Edition, version 0.9

Published by Ambrosius Publishing and Future Skill Software
www.analogmachine.org

Typeset using IATEX 2., TikZ, PGFPlots, WinEdt
and 11pt Math Time Professional 2 Fonts

Limit of Liability/Disclaimer of Warranty: While the author has used his best
efforts in preparing this book, he makes no representations or warranties with re-
spect to the accuracy or completeness of the contents of this book and specifically
disclaim any implied warranties of merchantability or fitness for a particular pur-
pose. The advice and strategies contained herein may not be suitable for your
situation. Neither the author nor publisher shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental,
consequential, or other damages. No part of this book may be reproduced by any
means without written permission of the author.

ISBN 10: x-xxxxX-XxxXXxX-X (ebook)

ISBN 13: xXx-X-XXXXXXX-X-X (ebook)
ISBN 10: x-xxxxxxx-X-X (paperback)
ISBN 13: xxx-X-XXXXXXX-X-X (paperback)

Printed in the United States of America.

Mosaic image modified from Daniel Steger’s Tikz image (http://www.
texample.net/tikz/examples/mosaic-from-pompeii/

Front-Cover: Metabolic pathway image from JWS online (Jacky Snoep)
with permission. The pathway depicts the glycolytic pathway from Lac-
tococcus lactis using the Systems Biology Graphical Notation (SBGN).
Ref: Hoefnagel, Hugenholtz and Snoep, 2002, Time dependent responses
of glycolytic intermediates in a detailed glycolytic model of Lactococcus
lactis during glucose run-out experiments. Mol. Biol. Reports 29, 157-161

www.analogmachine.org
http://www.texample.net/tikz/examples/mosaic-from-pompeii/
http://www.texample.net/tikz/examples/mosaic-from-pompeii/

Stoichiometric Networks

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Further Reading

Exercises

Introduction to Modeling

2.1
22
23
24
25
2.6

Stoichiometric Networks
Standard Visualization Notation
Mass-Balance Equations
................... 16
........................ 18
...................... 20
................... 24
........................... 26
.......................... 27
............................. 27

Stoichiometry Matrix
Reversiblity
Network Types
The System Equation

Introduction
Open, Closed, and Isolated Systems
.......................... 35
................. 36
...................... 38
...................... 40

Build a Simulation Model
Types of Model
Model Variables

Contents

31

........................ 31
........... 33

iii

v

CONTENTS
2.7 Model Parameters 46
2.8 Dimensionsand Units 50
2.9 Classificationof Models 52
2.10 Linear and Non-Linear Models 54
2.11 Linearization 56
2.12 ApproXimationso 61
2.13 ExampleModel L. 63
Further Reading 65
Exercises 66
Cellular Networks 69
3.1 Overall Organization 69
3.2 Network Representation. 70
3.3 Metabolic Networks 71
3.4 Protein Networks 73
3.5 Gene Regulatory Networks 82
3.6 Genome SizeS e 85
3.7 E.coli 89
3.8 Network Motifs 94
FurtherReading 102
Exercises 103
Jarnac Scripts 104
How Systems Behave 111
4.1 System Behavior 111
42 Equilibrium 112
4.3 Steady Stateo 115
4.4 Transients e 119
4.5 Setting up a Model in Software 119

CONTENTS

4.6
4.7
4.8

Effect of Different Kinds of Perturbations
Sensitivity Analysiso L

Robustness and Homeostasis

FurtherReading

Exercises

Jarnac Scripts L

5 Running Simulations
5.1 Introduction
5.2 Numerical Solutions
5.3 Matlab Solvers
5.4 Other Software
5.5 Specialized Software
5.6 Stochastic Kinetics
5.7 Modeling Standards and Databases
FurtherReading
Exercises
6 The Steady State
6.1 Steady State
6.2 Computing the Steady State
6.3 Effect of Different Perturbations
6.4 Stability and Robustness
6.5 Introduction to Stability
6.6 Sensitivity Analysis L.
6.7 Stability
6.8 Phase Portraits
6.9 BifurcationPlots

Further Reading, .

120
122
126
127
127
128

133
133
135
148
149
150
152
155
162
163

vi

Exercises

Jarnac Scripts oL oo

Stability

7.1 Stability
7.2 Phase Portraits
7.3 BifurcationPlots

FurtherReading

Multicompartmental System

8.1 Multicompartment Systems

8.2 Simple Diffusion

8.3 Catalytic Reaction across a Membrane

8.4 Concentrating Cascade

FurtherReading

Fitting Models

9.1 Introduction
9.2 Optimization Algorithms
9.3 Is the Model a Good Fit?
9.4 Estimating Confidence Intervals
9.5 Casestudies
9.6 Analysisof Residuals
9.7 x%-Goodness of Fit Test
9.8 Caveats in Data Fitting

9.9 Availability in Modeling Applications

9.10 Using PythontoFitData
Further Reading

CONTENTS

CONTENTS

Appendix A Kinetics in a Nutshell

Further Reading

Appendix B Enzyme Kinetics in a Nutshell

Further Reading

Appendix C Math Fundamentals

Short Table of Derivatives

Differential Equations

Eigenvalues and Eigenvectors

C.1 Notation
C2
C.3 Logarithms . . .
C.4 Partial Derivatives
C5
C.6 Taylor Series . .
C.7 Total Derivative .
C38
Further Reading

Appendix D Statistics Reminder

Normal Distribution

Confidence Interval

D1 Mean
D.2 Deviation
D.3 Standard Error . .
D.4 Covariance . . .
D.5

D.6

D.7 Bootstrapping . .
Further Reading

Appendix E Introduction to Jarnac

E.1

Quick Start Guide

vii

279
284

285
295

297
297
298
299
299
301
302
304
305
307

309
309
309
310
310
311
311
312
314

315

viii CONTENTS

E.2 CurrentDirectory 319
E.3 Simple Examples from the Console Window 319
E.3.1 Numerichandling 319

E32 TypeofData 320

E33 Integers. 322

E34 Floats., 322

E.3.5 Complex Numbers 322

E3.6 Boolean 323

E3.7 Strings 323

E38 CodeTypes. 323

E39 Matrices 325

E.4 Running ScriptFiles 328
E.4.1 CommentingCode 328

E.5 Reaction Network Models 329
E.5.1 Initialization of Model Values 331

E.5.2 Time Course Simulation 332

E.5.3 Applying Perturbations to a Simulation 334

E.5.4 Additional Plotting Commands 335

E.5.5 MultiplePlots 337

E56 SubPlots 337

E.5.7 Steady State and Metabolic Control 339

E.5.8 Other Model Properties of Interest 341

E.6 Generating SBML and Matlab Files 341
E7 Exercise 341
References 345
History 357

Other topics:

CONTENTS ix

1. More on bifurcation
2. Where to get data?
3. What rate laws to choose?

4. Preface, mention that we’re not going to talk about Boolean, petri nets
etc.

X CONTENTS

Preface

This book is an introduction to modeling biochemical pathways. The book
should be suitable for undergraduates in their early (Junior, USA, second
year UK) to mid years at college. The book can also serve as a reference
guide for researchers and teachers.

The latest edition together with free software and other material can be
found at www.analogmachine.org, www.sbw-app.org and the research
site, www.sys-bio.org.

Given the breadth of modeling biochemical systems I’ve had to be strict
on what to include and what not to include. The text itself reflects some-
what by own bias in the field. I concentrate on two poplar and successful
approaches to building, namely using differential equation and stochastic
dynamics. I leave it to others to write but Boolean networks, Petri nets and
the many other modeling approaches that exist. The other thing I do not
talk about it the selection of rate laws and the limitations and assumptions
of the various rate laws that one can use in building a biochemical models.
Many of these details can be found in the companion book Enzyme Ki-
netics for Systems Biology. Lastly, I major omission in the book is spatial
modeling, an area that is becoming increasingly important as researches
turn to modeling larger systems such as tissues and organs.

As with my earlier text book on Enzyme Kinetics for Systems Biology I
have decided to publish this book myself via a service called Createspace
that is part of Amazon. Over the years I've had many offers from publish-
ers to publish text books but have found the contracts they offer to be far
too restrictive. Two restrictions in particular stand out, the loss of copy-
right on the text as well as any figures but more problematic in today’s
environment, the inability to rapidly update the text when either errors are
found or new material needs to be added. With today’s print on demand
technology there is no reason for these restrictions.

There are many people and organizations who I should thank but foremost
must be my infinitely patient wife, Holly, who has put up with the many
hours I have spent working alone in our basement or long hours at the de-
partment and who contributed significantly to editing this book. I am also

www.analogmachine.org
www.sbw-app.org
www.sys-bio.org

CONTENTS Xi

most grateful to the National Science Foundation and the National Insti-
tutes of Health who paid my summer salary so that I could allocate the time
to write, edit and research. I would also like to thank the many undergrad-
uates, graduates and colleagues who have directly or indirectly contributed
to this work. In particular I want to thank my two teachers, David Fell and
the late Henrik Kacser who I had the privilege to work with as a graduate
student and postdoctoral fellow. I had many hours of fruitful and stimu-
lating conversations with Jannie Hofmeyr, Athel Cornish-Bowden, Vijay
Chickarmane, Jim Burns and last but not least Luis Azerenza. More re-
cently I should thank my graduate students, in particular Frank Bergmann
(author of SBW) who was (and is) a brilliant programmer, and Deepak
Chandran (author of TinkerCell) who developed a very deep understand-
ing of how networks operate. I thank them for they dedication and steadfast
enthusiasm while they worked in my lab.

Thanks to the authors of the TgX system, MikTeX (2.9), TikZ (2.1), PGF-
Plots (1.8.39) and WinEdt (6.0) for making available such amazing tools
to technical authors.

Finally, I should thank Michael Corral (http://www.mecmath.net/) and Mike
Hucka (sbml.org) whose I&TgXwork inspired some of the visual styles I
used in the text.

August 2013 HERBERT M. SAURO
Seattle, WA

Xii

CONTENTS

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.999,
www.sys-bio.org

Stoichiometric Networks

1.1 Prologue

Science fiction writers have for many years written stories about engineer-
ing life. Three in particular stuck a cord in my own mind, Frank Herbert’s
early work (1966), The Eyes of Heisenberg, describes a future where mi-
cromanipulation of cells at the molecular level is common place. Another
author, Harry Harrison in his Eden trilogy (1984), describes an earth popu-
lated by intelligent dinosaurs who have complete mastery over genetic en-
gineering and can manipulate living organisms at will. Finally Greg Bear
writes a story called Blood Music (1985) that describes a renegade bio-
engineer who reengineers his own lymphocytes with intelligence which
then begin to alter and “improve” his own genetic constitution with dire
effects. These and many other stories, going all the way back to Shel-
ley’s Frankenstein, have predicted that one day the ability to control and
change living systems at an unprecedented level would become a reality.
Obviously such control could be used for good or bad and science fiction
writers have recognized both aspects in their writings. There are consider-
able ethical issues at stake and many fear that such power could do great
harm.

2 CHAPTER 1. STOICHIOMETRIC NETWORKS

But what of the good? The ability to regenerate a severed spinal column,
the replacement of disfiguring skin burns, or a final cure for one of the
most feared diseases, cancer, could all eventually be resolved if we had a
better understanding of living systems. One way is to be able to predict
before hand what our interventions might lead to. A real understanding of
the dynamic response of a cell in response to arbitrary perturbations would
be of considerable help when looking for suitable targets for therapeutic
intervention or the design or new abilities via synthetic biology.

If we were to administer a drug or cocktail of drugs, or change the expres-
sion of one or more genes, can we predict the outcome? At the moment
not very well, and in fact the easiest way to find out what will happen is to
actually do the experiment, potentially a long a expensive process. When
the designers of space probes wish to land a robot on Mars, they don’t first
launch a rocket to see if it will work. If this were the approach it would
probably involve many trials to get the trajectories right, an impossibly
expensive approach. Instead, engineers use computer models to predict
before hand how much fuel to burn and what planets to use for a sling
shot. It is a remarkable feat of engineering and physics that space probes
can be flown with considerable precision to their destination.

This leads to the question whether as biologists, we too could predict
the outcome of interventions before they are even attempted? In recent
decades there has been growing interest and progress in the possibility of
building computer models of living organisms that can be used to make
such predictions. For example we might build a computer simulation of a
signaling pathway and use it to investigate possible targets for disrupting
and/or control, or a synthetic biologist who might need to design a genetic
network that can control when a cell will replicate or begin to produce a
useful commodity. All these applications could be helped if a computer
model were available.

This book will be concerned with introducing some of the main concepts
and techniques in building and running computer models. What we won’t
cover is how biochemical systems operate or how they can be analyzed.
Such topics will be reserved for a separate volume.

We will start by considering stoichiometric networks.

1.2. STOICHIOMETRIC NETWORKS 3

1.2 Stoichiometric Networks

Almost all cellular processes involve some kind of chemical process such
as binding, unbinding or transformation, often in specific stoichiometric
amounts. In addition, such processes have direction and show conserva-
tion of mass. We will classify cellular reactions as either elementary or
non-elementary. Before continuing it is recommended that the reader re-
viewer Appendix A which describes basic kinetics and a variety of impor-
tant terminology.

Elementary Reactions

Chemical reactions that involve no reaction intermediates, other than a sin-
gle transition state, are called elementary reactions. Elementary reactions

a) A—>» B b A<—=B ¢ A—B d A —>B

Figure 1.1 Simple Transformations. a) A single arrow, indicates positive
rate direction. b) Two arrows showing explicit reversibility. ¢) Common
barb style used to indicate reversibility. d) Reversibility with dominant
arrow indicating positive direction.

have been depicted in a number of ways in the literature. For example, the
transformation of one species into another can be represented by a simple
line with an arrow at the tip. The direction of the arrow indicates the di-
rection of the positive reaction rate (Figure 1.1). For example, if a reaction
rate is —0.75 mol 17!, this means that the reaction proceeds in the opposite
direction indicated by the arrow at a rate of 0.75 mol 1~!. As this example
implies, a single arrow head does not necessarily indicate that the reaction
is irreversible. Such a determination should be indicated by author of the
diagram. Often however reversibility is explicitly indicted by using mul-
tiple arrows. These come in various forms. One approach is to use two
lines and add arrow heads to both the reactant and product line as shown
in Figure 1.1b. Other authors add a smaller reverse arrow as shown in Fig-
ure 1.1d or more commonly use a barbed style as shown in Figure 1.1c.

4 CHAPTER 1. STOICHIOMETRIC NETWORKS

In example (c) and (d) it is not possible however to obtain the positive
direction of the rate.

For a bimolecular reaction that depicts dissociation or association the no-
tation is shown in Figure 1.2 (a) and (b). This style makes it clear that

B C

Figure 1.2 Dissociation and Association Reactions. (a) Equal stoichio-
metric proportions of compounds A and B combine to form a complex C.
(b) Likewise, complex A dissociates into equal proportions of B and C.

there is a stoichiometric constraint between A and B and B and C. For
example, that one molecule of A reacts with one molecule of B to form
one molecule of C.

The simple association and dissociation reactions can be naturally ex-
tended to depict the situation where both association and dissociation occur
in the same reaction as show in Figure 1.3.

A C

B D

Figure 1.3 A bimolecular interaction, coupling one process, A to C to
another B to D. Equal proportions of A and B combine to form equal
proportions of C and D.

One area that is frequently problematic is visually depicting reactions with
non-unity stoichiometry. The previous examples assume that each molec-
ular species has a stoichiometry of one. However, what if species A in
Figure 1.2 has a stoichiometry of 2 and B a stoichiometry of 3, how should
these be represented. Figure 1.3 shows three depictions that have been

1.2. STOICHIOMETRIC NETWORKS 5

in used by authors in the past. Sometimes simple arc extensions may be
used to indicate the stoichiometry, Figure 1.3a. A variation of (a) is to use
small barbs at the tips of the reaction arcs [21] where the number of barbs
indicates the stoichiometry, Figure 1.3b. Finally stoichiometric numbers
may be placed near the tips of the arcs Figure 1.3c. The use of numbers to
indicate stoichiometry permits the display of fractional stoichiometries.

Example 1.1

In the following network made from elementary reactions, write out the individual
reactions, taking care to indicate the correct stoichiometries.

—
A>—>B—<501>D

Answer:

2A— B
B—-3C
A+C — D

Non-Elementary Reactions

Non-elementary reactions include all reactions that have hidden reaction
intermediates. The most common is the enzymatic reaction where the
enzyme-substrate complex and free enzyme are rarely shown in network
diagrams. The effect of hiding intermediates is that it is now possible to
include regulatory links. For example, an enzyme may be regulated by
an allosteric effector where the mechanism might be quite complex. Very
often, this mechanism will be hidden and instead the action of the effector
will be represented by a simple regulatory line. For example, if an enzyme
that catalyzes the conversion of species S to S7 is inhibited by an effec-
tor molecule, M, then we will often depict this circumstance as shown in
Figure 1.4.

6 CHAPTER 1. STOICHIOMETRIC NETWORKS

M

Sl _>52

Figure 1.4 Modifier, M, inhibiting a non-elementary reaction such as a
reaction catalyzed by an allosteric enzyme.

In hiding detailed mechanisms we also, when converting the diagrams to
a mathematical model, invoke certain assumptions. In the case of a sim-
ple enzyme mechanism, we will often assume rapid-equilibrium or steady
state of the enzyme substrate complex. Sometimes these assumptions are
reasonable other times they are not. A discussion of this will be left to
another volume.

The key thing to remember is that whenever one sees a regulatory link in a
reaction step it always means that the reaction is non-elementary and hides
other mechanistic details. The use of non-elementary reactions is a high
level representation because exploding every non-elementary reaction into
the full set of elementary reactions would make the network much more
complex to view. Figure 1.5 illustrates an example of a relatively simple
pathway drawn using non-elementary reactions together with a feedback
inhibition step and the equivalent exploded view of the same system. The
exploded view is clearly more complex. The mechanism chosen for the
inhibition is the simplest possible and therefore the exploded view could
be much more complex.

Text Representation

Simple text representations of reaction networks have been used for many
years. Text representations are particulary easy to implement for computer
consumption of network information. For example, a linear chain of four
reactions can represented as follows:

Sometimes if a species is converted to a waste product, such as degradation
fragments, them often the symbol, @ will be used to represent the empty
species set, for example:

1.3. STANDARD VISUALIZATION NOTATION 7

a) Network made from Non-elementary Steps

ES4

Figure 1.5 Equivalent networks made from non-elementary and elemen-
tary components.

A+B->2C
B >0

1.3 Standard Visualization Notation

Cellular networks have been depicted on wall charts for many decades
using an informal notation. With the increased interest in recent years
in protein and gene regulatory networks the variety of notations has also
proliferated. As a result there have been some efforts, must notably the
Systems Biology Graphical Notation (SBGN), to define a standard set of
node and edge symbols to represent stoichiometric networks. In the next
few section we will briefly look at the visual representation of metabolic
networks using SBGN. For gene regulatory networks a notation similar to

8 CHAPTER 1. STOICHIOMETRIC NETWORKS

A->B

B->C
2C+D->4FE

E->2F

Figure 1.6 Simple textual representation of a linear chain of four reactions
and five molecular species.

that used by biotapestry [63] will be used because it is concise and easy to
read.

Enzyme Catalyzed Reactions

SBGN can represent enzyme catalyzed reaction using the SBGN process
description notation. For example, Figure 1.7 illustrates the SBGN ap-
proach to representing an enzyme catalyzed reaction. Round nodes rep-
resent small molecules such as DHAP, ATP and F6P. Rounded rectangles
are used to represent macromolecules, in this case enzymes TPase (Triose
phosphate Isomerase) and PFK (phosphofructokinase). In the second re-
action, ATP also negatively regulates the reaction.

1.4 Mass-Balance Equations

Consider a simple network comprising two reactions, vy and v, with a
common species, S. We will assume that the first reaction, v; produces S
and the second reaction, v,, consumes S (Figure 1.8).

According to the law of conservation of mass, any observed change in the
amount of species, S must be due to the difference between the inward
rate, v1 and outward rate, vy. That is, the change in S will be given by the

1.4. MASS-BALANCE EQUATIONS

@
O——0@ @@

a) Simple Process b) Multiple Reactants
S |:|

@ Inhibition
. , ——o []

¢) Simple Chemical Catalysis
—> [

Stimulaiion
e) Macromolecule d) Connecting Arcs

Table 1.1 Basic Symbols used in SBGN

10 CHAPTER 1. STOICHIOMETRIC NETWORKS

a) Simple uni-uni reaction

TPase

i%.

b) More complex reaction with regulation

0

g

Figure 1.7 SBGN notation for enzyme catalyzed reactions.

Figure 1.8 Simple Two Step Pathway.

difference in the two rates, leading to the differential equation:

ds
— = V1 — V2. (1-1)

The above equation is called a mass-balance equation. Often S will be
expressed in concentration (mol 171) but it is mass that is conserved not
concentration. We can reexpress equation 1.1 as:

— = V1 — V2

dt 'V

where S, is the amount of S in moles and V is the volume. Alternatively
we can write:

dt

= V(v —v2)

1.4. MASS-BALANCE EQUATIONS 11

This assumes that the reaction rates are expressed in mol 1”1 t~1. Often
models assume a constant unit volume so that numerically:

ds _ ds,
dt dt

and this will be the case is all the examples in this chapter. Although we
will write the rate of change in terms of concentration, it is implied that we
are dealing with a constant unit volume so that the change in concentration
is the same as the change in amount. If movement is from one compart-
ment to a compartment with a different volume then it is necessary to factor
in the volume difference and express the rate of change in amounts.

For more complex systems such as the one shown in Figure 1.9 where there
are multiple inflows and outflows, the mass-balance equation is given by:

/

Inflows i Outflows

\

dS;/dt =) Inflow —) _ Outflows

\/

Figure 1.9 Mass Balance: The rate of change in species S; is equal to the
difference between the sum of the inflows and the sum of the outflows

dSl Z Inflows — Z Outflows (1.2)

For an even more general representation, we can write the mass-balance
equations by taking into account the stoichiometric coefficients. The rate at
which a given reaction, v; contributes to change in a species, S; is given by
the stoichiometric coefficient of the species, S; with respect to the reaction,
c¢ij, multiplied by the reaction rate, v; (See equation A.l). That is, a

12 CHAPTER 1. STOICHIOMETRIC NETWORKS

reaction j contributes, ¢;;v; rate of change in species S;. For a species,
S; with multiple reactions producing and consuming S;, the mass-balance
equation (assuming constant unit volume) is given by:

ds;
- :Zc,-jvj (1'3)
J

where ¢;; is the stoichiometric coefficient for species i with respect to re-
action, j. For reactions that consume a species, the stoichiometric coeffi-
cient is often negative otherwise the stoichiometric coefficient is positive
(See Appendix A). In considering the simple example in Figure 1.8, the
stoichiometric coefficient for S with respect to vy is +1 and for vy is —1.
That is

as _ .

dt = Cs1V1 Cs2V2

or

das

T (+Dvy + (=Dvz = v —v2

The way in which the construction of the mass-balance equation is de-
scribed may seem overly formal, however the formality allows software
to be written that can automatically convert network diagrams into mass-
balance differential equations.

Example 1.2

Consider a linear chain of reactants from S; to S5 shown in Figure 1.10. Write
out the mass-balance equations for this simple system.

1.4. MASS-BALANCE EQUATIONS 13

U1 1%) U3 Vg

S S> S3 S4 Ss

Figure 1.10 Simple Straight Chain Pathway.

ds: ds,

— =V —Z =y, —v

dt ! dt t—n

dass dSs

— = Uy — UV — = V3 — U

dt 2 3 dt 3 4
dSs
Pl 1.4
7 Vg4 (1.4

Each species in the network is assigned a mass-balance equation which accounts
for the flows into and out of the species pool.

Example 1.3

Write out the mass-balance equation for the following branched system:

4
— S,
S

N
N\

Figure 1.11 Multi-Branched Pathway.

14 CHAPTER 1. STOICHIOMETRIC NETWORKS

The mass-balance equations are given by:

! = v2 U3
dt !
dS2 v
dt

Example 1.4

Write out the mass-balance equation for the more complex pathway:

A+x 2 ox
v2
X+vYy 2 7z
v3
7z 2 Y4B

This example is more subtle because we must be careful to take into account the
stoichiometry change between the reactant and product side in the first reaction
(v1). In reaction vy, the stoichiometric coefficient for X is +1 because two X
molecules are made for every one consumed. Taking this into account the rate of
change of species X can be written as:

dX 4o

—V =—Uu V1 — U2

dt
or more simply as v; — v,. The full set of mass-balance equations can therefore
be written as:

dA dX
E:—Ul E:vl—vz
dY dzZ
E=U3—02 EZUz—U:;
dB
@ T

The last example (1.4) illustrates a very important aspect of converting a
network diagram into a set of differential equations. The process is poten-
tially lossy. That is, it is not always possible to fully recover the original

1.4. MASS-BALANCE EQUATIONS 15

network diagram from the set of derived differential equations. This is be-
cause in one or more of the reactions the stoichiometries may cancel out.
In the example (1.4) the reaction, A + X —> 2X is not recoverable from
the final set of differential equations. Instead if we reverse engineered the
differential equations the first reaction would be:

A—> X

which is not like the original. This is not perhaps a common occurrence al-
though in protein signaling pathways it might be more common than other
kinds of networks. What it means however is that sharing models by ex-
changing differential equations is not recommended. This is one reason
why standard exchange formats such as SBML [48] store models explic-
itly as a set of reactions not as a set of differential equations. Many mod-
els are exchanged using Matlab which means that much of the biological
information, particularly information on the underlining network, is lost.
Exchanging models via computer languages such as Matlab is therefore
not recommended.

Example 1.5

Write out the mass-balance equation for pathway:

Si+ 85 -5 s,
vy
232 — S3
v3
S3 — 3S4

In this example we have non-unity stoichiometries in the second and third reaction
steps. The mass-balance equations are given by:

s, s, 5
—_ = —V — = V1 — 2V
dt ! dt e
dsSs s,

= VU — U3 —_— = 31)3

dr dt

16 CHAPTER 1. STOICHIOMETRIC NETWORKS

From the previous examples we can see that it is fairly straight forward
to derive the balance equations from a visual inspection of the network.
Many software tools exist that will assist in this effort by converting net-
work diagrams, either represented visually on a computer screen (for ex-
ample, JDesigner) or by processing a text file that lists the reactions in the
network (for example via Jarnac) into a set of differential equations (See
Appendix E).

1.5 Stoichiometry Matrix

When describing multiple reactions in a network, it is convenient to repre-
sent the stoichiometries in a compact form called the stoichiometry ma-
trix, traditionally denoted by N, where the symbol N refers to number’.
The stoichiometry matrix is a m row by n column matrix where m is the
number of species and n the number of reactions:

N = m x n matrix

The columns of the stoichiometry matrix correspond to the individual chem-
ical reactions in the network, the rows to the molecular species, one row
per species. Thus the intersection of a row and column in the matrix in-
dicates whether a certain species takes part in a particular reaction or not,
and, according to the sign of the element, whether there is a net loss or gain
of substance, and by the magnitude, the relative quantity of substance that
takes part in that reaction. That is the elements of the stoichiometry matrix
do not concern themselves with the rate of reaction. This latter point is
particular important when we will consider in a later chapter the various
stoichiometric analyses that can be carried out purely on the stoichiometry
without any reference to reaction rate laws.

I'Some recent flux balance literature uses the symbol S

1.5. STOICHIOMETRY MATRIX 17

The stoichiometric matrix is not concerned with describing the
reaction rates. Reaction rates are given by the rate laws which is
a separate vector (See section 1.8).

|\ J

In general the stoichiometry matrix has the form:

where ¢;; is the stoichiometry coefficient for the i species and j™ re-
action. As was mentioned before the stoichiometry matrix is in general
a lossy representation. That is, it is not always possible to revert back to
the original biochemical network from which the matrix was derived. For
example consider the simple stoichiometry matrix:

The most obvious network that this matrix could have been derived from
is:

A— B
B—C

But equally plausible is this network:

24 — A+ B
B—C

If is not possible from the stoichiometry matrix alone to determine which
was the original network.

18 CHAPTER 1. STOICHIOMETRIC NETWORKS

Example 1.6

Write out the stoichiometry matrix for the simple chain of reactions which has
five molecular species and four reactions as shown below. The four reactions are
labeled, v; to vg4.

The stoichiometry matrix for this simple system is given by:

V1 Uz V3 VU4

-1 o 0 o S
1 -1 0 0 S>
0 1 -1 0 S3
0 0 I -1 Sy
o 0 O 1 S5

The rows and columns of the matrix have been labeled for convenience. Normally
the labels are absent.

Example 1.7

Write out the stoichiometry matrix for the multibranched pathway shown in Fig-
ure 1.11

1.6 Reversiblity

Up to this point nothing has been said about whether a given reaction is
reversible or not. When dealing with kinetic models, reversibility often
manifests itself as a negative reaction rate in the rate law. For example

1.6. REVERSIBLITY 19

the rate law for the simple mass-action reversible reaction, A = B is often
given by:
v=k 1 A— sz

When this reaction goes in the reverse (right to left) direction, the reaction
rate, v, will be negative. This may not be apparent from the stoichiometry
matrix, which in this case will be:

-1
=[]
Information on reversibility is therefore traditionally found in the rate law.
Depending on the modeling problem, reversibility can be made more ex-
plicit in the stoichiometry matrix by specifying a separate reaction path

for the reverse reaction. For example, in the previous example we might
instead represent the system by two separate rate laws:

A— B vr=kA

B— A v,:sz

in which case the stoichiometry matrix now becomes:

—1 1
]
Splitting a reaction into separate forward and reverse steps might not al-

ways be possible however. For example an enzyme catalyzed reversible
reaction such as 4 = B cannot be represented using:

dB
E =0 f — Uy

where the forward (vy) and reverse (v,) rates might be represented by
irreversible Michaelis-Menten rate laws because the individual reactions
are not independent but are connected by the shared enzyme pool. In such
cases, the full enzyme mechanism in terms of elementary steps should be
used.

20 CHAPTER 1. STOICHIOMETRIC NETWORKS

To illustrate that we can apply the stoichiometry matrix to other kinds of
networks, let us look at a simple signaling network and two simple gene
regulatory networks.

1.7 Network Types

Signaling Networks

Figure 1.12 illustrates a simple protein signaling network, comprising two
double phosphorylation cycles coupled by inhibition by protein C on the
lower double cycle (D, E and F). In this model, all species are proteins
and we assume that protein A and D are unphosphorylated, B and E singly
phosphorylated and C and F doubly phosphorylated. C acts as a kinase
and phosphorylates D and E. The reverse reactions, vz, v4, v7 and vg are
assumed to be catalyzed by phosphatases.

v, vy
7 7
A B C
TN
Vo '1)4
VTR NN

F
\/
V7

g

Figure 1.12 Simple Signaling Network. Protein C inhibits the activity of
reactions vs and vg.

There is no specified stoichiometric mechanism for the inhibition on vs
and vg. Therefore the stoichiometric matrix will contain no information

1.7. NETWORK TYPES 21

on this. The stoichiometric matrix for this system will look like:

U1 1%) U3 Vg Vs Ve U7 Ug
AT -1 1 0 0 0 0 0 07
B 1 -1 -1 1T 0 0 0 0
c 0O 0 I -1 0 0 0 O
N=1»p O 0 0 0 -1 0 1 0 (1.5)
E 0O 0 0 0 1 —1 —1 1
FL o o 0o 0 0 1 0 —1 |

The stoichiometric matrix can be seen to be composed of two separate
blocks corresponding to the two cycle layers. It is important to note that
whenever there are regulatory interactions in a pathway diagram, these
do not appear in the stoichiometry matrix. Instead, such information will
reside in the rate law that describes the regulation. If however the mecha-
nism for the regulation is made explicit then details of the regulation will
appear in the stoichiometry matrix. Figure 1.13 will shows a simple exam-
ple of an inhibitor / regulating a reaction, S to P. On the left is displayed
the implicit regulatory interaction. All we see is a blunt ended arrow indi-
cating inhibition. In this case, details of the regulation will be found in the
rate law governing the conversion of S to P. On the right is displayed an
explicit mechanism, a simple competitive inhibition. In this case details of
the inhibition mechanism will find its way into the stoichiometry matrix,
although from an inspection of the stoichiometry matrix it is not obvious
what kind of regulation it is.

Figure 1.14 shows a comparison of the implicit and explicit models in
terms of the stoichiometry matrix. In each case the rate laws also change.
In the implicit form, the rate law will be a Michaelis-Menten competitive
inhibition model whereas in the explicit model, the rates laws (now mul-
tiplied in number) will be simple mass-action rate laws. The choice of
what to use, an implicit or explicit model, will depend entirely on the type
of question that the model is being used to answer. There is no right or
wrong way to do this, the details of a model will depend on the type of
question being asked.

22 CHAPTER 1. STOICHIOMETRIC NETWORKS

kq ks
I S+E —— ES E+P
k
S——p
ks k4
Implicit Regulatory El Explicit Regulatory
Interaction Interaction

Figure 1.13 Example of implicit and explicit depiction of a regulatory
interaction. The left-hand mechanism involving inhibitor / will not appear
in the stoichiometry matrix whereas the explicit mechanism, right-hand
figure, it will.

Gene Regulatory Networks

Consider a transcription factor P; that represses a gene with expression
rate v3 shown in Figure 1.15, left panel. In this model we have production
of P; from reaction vy and degradation of P; via v;. The construction
of the stoichiometry matrix will depend on how we represent the regulated
step, v3. If regulation is implied, i.e. there is no explicit kinetic mechanism,
then the regulation will not appear in the stoichiometry matrix. For the
network on the left in Figure 1.15, the stoichiometry matrix will be given
by:
U1 (%)
N=P [1 -1] (1.6)

The stoichiometry matrix has only one row indicating that there is only one
species in the model, P; and there is no hint in the stoichiometry matrix
that there is regulation. In this model, P; is not explicitly sequestered by
the operator site that is upstream of the gene. We make the significant
assumption that when P; regulates, it is itself is not affected in any way.

Consider now that the interaction between P; and vs is made mechanis-
tically explicit. The right hand network in Figure 1.15 shows one possi-
ble way in which to represent the interaction of the transcription factor,

1.7. NETWORK TYPES 23

Up V2 VU3 VUg Us
V1 S —1 1 0 -1 1
S —1 P 0 1 0O o0
N=P 1 N= 1 0 0 -1 1
1 0 ES 1 -1 1 0O o0
EI 0 0 1 -1

Implicit Explicit

Figure 1.14 Stoichiometry matrices corresponding to the two models in
Figure 1.13

Py with gene v3. In the explicit model, the transcription factor, P is
assumed to bind to a repressor site preventing gene expression. In the ex-

Implicit Model Explicit or Mechanistic Model

1 v _E:\ctive

U3

2 11}2

vy U1

e i N (@

o nactive

Figure 1.15 Two simple gene regulatory networks involving gene repres-
sion. On the left side is the implicit model where P; represses vs, on the

right side is the explicit model showing a more detailed mechanism for the
regulation.

plicit model there are two new species, designated active gene and inactive
gene. The stoichiometry matrix will therefore include two additional rows
corresponding to these two new species. The stoichiometry matrix for the

24 CHAPTER 1. STOICHIOMETRIC NETWORKS

explicit model is shown below:

U1 V2 V4r Uaf
P 1 -1 -1 1

N = Pi(Active) 0 0 -1 1 1.7
Pji(InActive) 0 0 1 -1

In this case, P; is actively sequestered on to the operator site and there-
fore appears in the stoichiometry matrix. Processes such as consumption,
production or sequestration by some binding mechanism will appear as
columns in the stoichiometry matrix. Regulation that is often depicted by
arrow or blunt ends are modeled in the rate law itself and therefore do not
appear in the stoichiometry matrix.

In conclusion, regulation does not appear explicitly in a stoichiometry ma-
trix unless the regulation is represented in an explicit mechanistic scheme.
The choice of implicit or explicit representations depends on the question
being asked and the availability of suitable data.

1.8 The System Equation

Equation 1.3, which describes the mass balance equation, can be reex-
pressed in terms of the stoichiometry matrix to form the system equation.

— =Nv (1.8)

where N is the m x n stoichiometry matrix and v is the n dimensional rate
vector, whose ith component gives the rate of reaction i as a function of
the species concentrations. s is the m vector of species.

1.8. THE SYSTEM EQUATION 25

Looking again at the simple chain of reactions in Figure 1.10, the system
equation can be written down as:

1 0 0 0
i 1 =1 0 0 z;
Z _No= 0 1 -1 0 (1.9)
dt 0 0 1 -1 U3

0 0 0 1 va

If the stoichiometry matrix is multiplied into the rate vector, the mass-
balance equations show earlier (1.4) are recovered. To illustrate that the
system equation might look like for a simple system, consider the model
in Jarnac format:

p = defn cell
A -> B; klxA - k2x%B;
B -> C; k3*B - k4x*C;

end;

p-k1 = 0.1; p.k2 = 0.02;

p-k3 = 0.3; p.k4 = 0.04;

p.A =10; p.B =0; p.C = 0;

The system equation for this model will be given by:

1 0
ds N _ klA—sz
a=Ne= |1 esce] awo

All stoichiometric interactions are placed in the stoichiometry matrix.

The example shown in Figure 1.12 and Figure 1.15 illustrated non-stoichiometric
interactions, namely two inhibition interactions from C to reactions vs and

ve and repression on vz by Pi. As was noted, these interactions do no oc-

cur in the stoichiometry matrix. Instead they will be found in the rate
vector, v in the form of a particular rate law.

The stoichiometry matrix represents the mass transfer connectivity of the
network and contains information on the network’s structural mass-transfer

26 CHAPTER 1. STOICHIOMETRIC NETWORKS

characteristics. These characteristics fall into two groups, relationships
among the species and relationships among the reaction rates. These rela-
tionships will be considered in detail in another volume.

1.9 Jarnac

The modeling platform Jarnac [91] provides facilities to extract the stoi-
chiometry matrix from a model. The command for generating the stoi-
chiometry matrix is p.sm assuming the model is stored in the variable p.
The script and results of a run are given below:

p = defn cell
J1: A -> B; kixA - k2xB;
J2: B -> C; k3*%B - k4%*C;

end;

p-k1 = 0.1; p.k2 = 0.02;

p-k3 = 0.3; p.k4 = 0.04;

p-A =10; p.B =0; p.C = 0;

// Print out the stoichiometry matrix
println p.sm;

If this script is run, the output is as shown below:

J1 J2
A{ -1 03}
B { 1 -1}
¢ { 0 11}

Note that in Jarnac, matrices are labeled, this is useful for identifying the
corresponding species and reactions in the stoichiometry matrix.

1.9. JARNAC 27

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edi-
tion, Ambrosius Publishing ISBN: 978-0982477335

2. Stephanopoulos G, Aristidou A, and Nielsen J (1998) Metabolic en-
gineering: principles and methodologies. Academic Press, ISBN:
978-0126662603

3. Palsson BO (2006) Systems Biology Systems Biology: Properties of

Reconstructed Networks. Cambridge University Press, ISBN: 978-
0521859035

Exercises

1. Explain the difference between the terms: Stoichiometric amount,
Stoichiometric coefficient, rate of change (dX /dt) and reaction rate
(v;). Refer to Appendix A to answer this question.

2. Determine the stoichiometric amount and stoichiometric coefficient
for each species in the following reactions:

A— B

A+ B —C
A— B+C

2A — B
3444B —2C + D
A+B—A+C
A+2B—3B+C

3. Derive the set of differential equations for the following model in
terms of the rate of reaction, v1, v and vj:

28 CHAPTER 1. STOICHIOMETRIC NETWORKS

A% 2B
B3 2c

v3
C >

4. Derive the set of differential equations for the following model in
terms of the rate of reaction, vy, v, and v3:

v
A— B
2B+CEBB+D

DBC+4

5. Write out the stoichiometry matrix for the networks in question 3
and 4

6. Enter the previous models, 3 and 4, into Jarnac and confirm that the
Jarnac stoichiometry matrices are the same as those derived manu-
ally in the exercises.

7. Derive the stoichiometry matrix for each of the following networks.
In addition write out the mass-balance equations in each case.

(a)

Vv, LBV
Ay\iD
NN

(b)

1.9. JARNAC

29

_>S1 SZL>
(©
(5
N 7
A C
_
(%>}
(d)
A+x S Byy B+X -3y

v3
B—C

vs
D+Y > X

X +w Loy

cC+x B D41y
Ve
X —Y

00 B x4+ w

8. For the irreversible enzyme catalyzed reaction, A — B:

(a) Write out the stoichiometry matrix.

(b) Write out the stoichiometry matrix in terms of the elementary
reactions that make up the enzyme mechanism.

9. A gene G expresses a protein p; at a rate vy. p; forms a tetramer
(4 subunits), called p‘lt at arate v,. The tetramer negatively regulates
a gene G,. p; degrades at a rate vs. G, expresses a protein, pp at a

30

CHAPTER 1. STOICHIOMETRIC NETWORKS

10.

11.

12.

13.

rate vg. p» is cleaved by an enzyme at a rate v4 to form two protein
domains, pé and p%. p% degrades at a rate vs. Gene G3 expresses a
protein, p3 at a rate vg. p3 binds to p% forming an active complex,
P4 at a rate vig, which can bind to gene G and activate G;. p4
degrades at a rate v7. Finally, p% can form a dead-end complex, ps,
with p4 at a rate vg.

(a) Draw the network represented in the description given above.

(b) Write out the differential equation for each protein species in
the network in terms of vy, va,

(c) Write out the stoichiometric matrix for the network.

Write out the differential equations for the system depicted in equa-
tion 1.9.

Given the following stoichiometry matrix, write out the correspond-
ing network diagram. Why might this process not fully recover the
original network from which the stoichiometry matrix was derived?

(1.11)

S oo oD~ O
—_

QU QR
eNeBeBeNe)

Why is it better to store a model as a list of reactions rather than a
set of differential equations?

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.92,
www.sys-bio.org

Introduction to Modeling

2.1 Introduction

The universe is a very large place and to study it in its entirely would not
be practical. Instead we always study a small portion of the universe, often
under very controlled conditions which we call a system. Everything else
other than the system is called the surroundings. Between the system and
the surroundings we try to enforce strict rules on how the system interacts
with the surroundings. These interactions occur at the system boundary.

The system is a defined region of the universe that we wish to study.
The surroundings is everything else other than the system.

The boundary is the interface between the system and
the surroundings.

" J

The word system derives from the Greek term to mean “place together”,
that is a system is generally one or more parts working together. There are

31

32 CHAPTER 2. INTRODUCTION TO MODELING

however certain characteristics about systems that we impose that make
them very suitable to study.

In order to make the study of a particular system possible we will often
have strict conditions on how the system interacts with the rest of the uni-
verse. If the system were allowed to freely interact with the surroundings
without any restrictions then we’re effectively back to studying the entire
universe again. When we study a system we will usually make sure that
we know exactly how the system interacts with the surroundings and in
ways that we can control.

To make this more concrete, consider an animal cell that consumes glu-
cose, produces waste products and generates a small amount of heat. The
animal cell will be our system. In an experiment we may arrange things
so that the concentration of glucose and waste products outside the cell are
kept relatively constant during the experiment. In addition we can keep the
animal cell in a thermostatically control temperature bath. By keeping the
environment constant we are insulating the animal cell from any extrane-
ous changes that might inadvertently affect our system in unknown ways.
We therefore have control over the system. If we didn’t, we would find it
very difficult to study the behavior of the animal cell.

The actual boundary of the system is however entirely at the discretion of
the experimenter and depends on practical as well and scientific considera-
tions. The important point is that the boundary is under our strict control,
at least in principle. The nature of this control also determines whether our
system is open, closed or isolated.

In general, the experimenter decides the location of the boundary that
exists between the system and the surroundings. Often this is accom-
plished by having strict control over the surroundings.

2.2. OPEN, CLOSED, AND ISOLATED SYSTEMS 33

2.2 Open, Closed, and Isolated Systems

When considering systems it is usual to distinguish between three types
of boundary between the system and the surroundings (i.e. rest of the uni-
verse). These types are called isolated, closed and open systems. Each
of these systems represent an idealized state. In practice we can often ap-
proximate them quite well. An isolated system, as the name suggests, is
completely cut off from the rest of the universe, that is neither energy or
matter can be transferred across the isolated systems’s boundary. A closed
system is one that only transfers energy, for example heat, work or light.An
open system is one that can exchange both energy and mass with the sur-
roundings.

The distinction between a closed and open system in biology is very impor-
tant. Open systems are characteristic of biological systems. For example,
glycolysis is a pathway for converting an external nutrient source, such as
glucose, into available energy, such as ATP or heat and waste products such
as lactate or ethanol. That is it exchanges mass and energy with the sur-
roundings. Without mass and energy exchange biological systems would
eventually run to thermodynamic equilibrium and cease to function. All
models of living biological model are therefore open.

The previous example of an experiment done on an animal cell illustrates
an open system. In this case the cell consumed glucose and produced
waste products in addition to generating heat. Even though there was the
free exchange of matter and energy we nevertheless made sure that we
continually replenished the glucose so that it appeared to the cell that the
level of glucose was constant. Likewise we ensured that waste products
didn’t build up and that the generated heat didn’t cause the temperature
to rise because we immersed the experiment in a heat bath. From the
perspective of the animal cell, the surroundings appeared constant even
though there was a continue exchange between the surroundings and the
animal cell.

Example 2.1

For each of the following systems, decide whether the system is isolated, closed
or open. Comment on the nature of the surroundings.

34 CHAPTER 2. INTRODUCTION TO MODELING

Isolated System Closed System

“l"'
~\ (/)
Enel’gy

/

‘\“l',
nyt

)
2,
ll'

‘i

Open System
\L1Y
-
~——— Mass
N
>
\)
I\

Energy

“\“l,,

Figure 2.1 Open and Closed Systems.

i) A system represented by a mechanical clock slowly winds down in a room
controlled by a thermostat.

The clock starts with an amount of potential energy in the wound spring which
slowly dissipates, ultimately as heat which is transferred to the surroundings. No
mass is exchanged with the room. The clock is therefore a closed system. Because
the clock is in a temperature controlled room, the temperature of the room appears
constant to the clock even though the clock dissipates heat.

ii) A car engine running idle in the open air.

The car engine is burning fuel that generates both waste gases and heat. The heat
and waste gases are lost to the surroundings. At the same time the car engine takes
in oxygen. The car system is therefore open since it exchanges both matter and
energy with the surroundings. In addition, given that the exchange takes place in
the open, the surrounding temperature, oxygen and carbon dioxide levels appear
constant because the large volume of the atmosphere acts as a buffer. We assume
that the fuel tank is part of the system and therefore we do not consider the loss
of fuel to be an exchange of mass with the surroundings.

iii) A bacterial culture is grown in batch and kept in a sealed and insulated cham-
ber.

The batch vessel is isolated and therefore the culture itself is an isolated system.
There is no exchange of mass or energy with the surroundings. However, if we
focus our attention on a single bacterium we would have to conclude that a single
cell is an open system which consumes nutrients, produces waste and generates
heat. However, the bacterial surroundings are not kept constant and the temper-

2.3. MODELS 35

ature as well as waste products rise with the loss of nutrients. Eventually the
nutrients are used up, the culture dies and the system tends to thermodynamics
equilibrium.

2.3 Models

There are many ways to describe systems, these range from pictures or
cartoons, to verbal and mathematical representations. Collectively, these
descriptions are called models. A model is our way of describing a particu-
lar system. The Oxford English dictionary defines a model in the following
way:

“A simplified or idealized description or conception of a par-
ticular system, situation, or process, often in mathematical
terms, that is put forward as a basis for theoretical or empirical
understanding, or for calculations, predictions, etc.”

This definition embodies a number of critical features that defines a model,
the most important is that a model represents an idealized description, a
simplification, of a real world process. This may at first appear to be a
weakness but simplification is usually done on purpose. Simplification al-
lows us to comprehend the essential features of a complex process without
being burdened and overwhelmed by unnecessary detail.

A more interesting way to describe models is to use mathematics, a lan-
guage designed for logical reasoning. Mathematical models are useful in
biology for a number of reasons, but the three most important are increased
precision, prediction, and the capacity for analysis. Analysis can be car-
ried out either by simulation or by mathematical analysis. Although visual
models can be used to make predictions, the kinds of predictions that can
be made are limited. The use of mathematical models opens up whole new
vistas of study which visual models simply can not match.

36 CHAPTER 2. INTRODUCTION TO MODELING

A model is a simplified description of a system. A model can be used
to represent known facts about the system and hypotheses concerning
the system’s operation. Models can be described using pictures, plain
text, mathematics or computer software.

2.4 Build a Simulation Model

Water Tank Model

Figure 2.2 shows two water tanks. The first tank is fed with water at a rate
01 (m3 s™1). This tank drains into a second tank at a rate Q> which in
turn drains to waste at a rate 3. The second tank has an additional feed
of water flowing in at a rate Q4. The height of the water level in each tank
is given by A1 and A, respectively. Each tank has a cross sectional area A.

The rate of change in the volume of water in a given tank is the rate at
which the water enters minus the rate at which it leaves. For example for
the first tank we have:

dVy

—— = ¢1— 2

5 = 1—9
If we want the equation in terms of the rate of change of height then we
needs to recall that V' = Ah, that is:

dv dh
L q=
dt dt
so that:
dhl _ Ql - Q2
dt A

Using Torrielli’s Law we know that the rate of water flowing out of a given
tank, i, is equal to:

Qi = Kivh

2.4. BUILD A SIMULATION MODEL 37

Where K; is a constant related to the resistance of the output pipe. There-
fore for the first tank we have:

dhy Q01— Kvh
dt A

Figure 2.2 Water Tank Model

Given this information, answer the following questions:

a) Plot the rate of outflow, Q», as a function of the height of water, & ata
given resistance, K.

b) Assuming that Q1 and Q4 are fixed, and we start with both tanks empty,
what do you expect to happen over time as water flows in?

¢) Write out the differential equations (ODEs) that describe the rate of
change in the tank water levels, 41 and h;.

d) Build a computer model of the tank system, assign suitable values to the
parameters in the model and run the simulation to plot the height of water
in the tanks over time. Assume both tanks are empty at time zero.

e) Investigate the effect of increasing and decreasing the resistance param-
eters, K1 and K> on the model.

38 CHAPTER 2. INTRODUCTION TO MODELING

2.5 Types of Model

Models come in various forms including verbal, written text, visual, math-
ematical and others. Molecular biology, has a long tradition of using vi-
sual models to represent cellular structure and function; one need only
look through a modern textbook to see instances of visual models on every
page. Visual models have been immensely useful at describing compli-
cated biological processes but are limited in their scope.

Like visual models, mathematical models can serve at least two important
purposes in systems biology:

e Conceptual Models

Conceptual models serve as test-beds for investigating basic prin-
ciples, for example the effects of feedback or sequestration. Con-
ceptual models are not intended to describe actual real biological
systems but are instead employed to aid reasoning about particular
aspects of biological networks. Conceptual models are frequently to
illustrate properties of biological networks.

e Concrete Models

Concrete models are constructed to model a specific real system,
such as glycolysis, apoptosis or the sporulation circuit in Bacillus
subtilis. They represent a working hypothesis for a particular bio-
logical system and allows us to generate predictions about the real
system and falsifiable statements about the model.

Concrete Models

What makes a good concrete model? There are a range of properties that
a good model should have, but probably the most important are accuracy,
predictability and falsifiablity.

> A model is considered accurate if the model is able to describe current
experimental observations, that is a model should be able to reproduce the
current state of knowledge.

2.5. TYPES OF MODEL 39

> A predictive model should be able to generate insight and/or predic-
tions that are beyond current knowledge. Without this ability a model is
considerably less useful, some would even suggest useless.

> Finally, a model should be falsifiable. By this we mean that a model
cannot be proved be true only disproved. The only discipline where state-
ments can be actually be proved to be true or false is mathematics. Starting
with a set of axioms, mathematicians derive theorems that can be shown
beyond any doubt to be true or false. In contrast scientific models based
on observations cannot be proved correct. This is because it is simply
not possible to test every possible circumstance in which the model may
apply. Instead we are left with two options:

Model Falsification

We can falsify a model by finding one observation that the model fails to
predict. In this case the model must be changed or abandoned. For ex-
ample, the statement, RNA is never transcribed into DNA can be falsified
simply by finding one instance where it happens (e.g. the life cycle of the
HIV virus). Although the idea of falsifying a model is appealing, in prac-
tice it is not often used. This leads to the second option, model validation
which is probably the most commonly used approach.

Model ‘Validation’

Model validation is based on the idea that predictions made by the model
are verified by experiment. The word validate may imply that once a model
is ‘validated’, the model can now be considered a true representation of the
real system but this is not correct. A validated model is simply one where
our confidence in a model’s ability to predict and provide insight has in-
creased. As already suggested, no model is correct. The utility of a model
is based on how well it can make useful predictions and how well it fits
existing knowledge. Models will have a certain scope within which they
are useful. For example, Newtonian mechanics is useful for describing ob-
jects traveling at sub-light speeds, higher velocities are beyond the scope
of the Newtonian model. Michaelis-Menten kinetics is useful for describ-

40 CHAPTER 2. INTRODUCTION TO MODELING

ing steady state kinetics but is less useful for describing transient behavior
if the enzyme concentration is higher or comparable to the substrate con-
centration. One role of validation is to delineate the scope of a model.

Validation therefore serves two purposes, to describe the scope of a model
and to increase confidence in the ability of the model to make useful pre-
dictions. It is important to understand that validation does no ‘prove’ that
a model is correct since no such statement can easily be made.

Other Attributes

There are other attributes of a model that are desirable but not essential,
these include parsimonious and selective. A parsimonious model is a
model that is as simple as possible, but no simpler. Occam’s infamous ra-
zor which states that “Entities should not be multiplied beyond necessity”
and argues that given competing and equally good models, the simplest
is preferred. Finally, since no model can represent everything in a given
problem, a model must be selective and represent those things most rele-
vant to the task at hand.

2.6 Model Variables

One of the first decisions to make when developing a model is to identify
the external (the causes) and internal variables (effects). In systems biol-
ogy, these variables often include the concentrations of molecular species
or voltages across membranes.

The internal variables of the system are often termed the state variables
or dynamic variables and will change in time as the system evolves. The
values of the state variables are determined by the model or system. In
biochemical models the state variables are the various molecular species
such as metabolites, proteins, mRNA etc. In this book such variables will
also be referred to as floating species to reflect the fact that these species
can change during a simulation or experiment.

2.6. MODEL VARIABLES Y|

The state of a system at time ¢ is described by a set of state
variables:

x(1)
They are the smallest set of variables that define the state of the
system.

In contrast to the floating species, the external variables are in principle
under the strict control of the experimenter. Often the external variables
are clamped to some fixed values (c¢f. voltage clamp) but could also be
varied in some controlled way by the experimenter. The external variables
are also called boundary variables because they are considered to be at
the boundary of the system and the rest of the universe.

Physically, external variables are usually clamped by some kind of buffer-
ing mechanism. The buffering mechanism can simply be a large external
reservoir so that any exchange of mass between the system and the exter-
nal reservoir has a negligible effect on the external concentration. Alter-
natively there may be active mechanisms maintaining an external concen-
tration. A classic example of active maintenance of an external variable is
the voltage clamp used in electrophysiology.

External concentrations may also simply be slow moving compared to the
timescale of the model so that over the study period, the external concen-
trations change very little. A typical example of the latter is the study of
a metabolic response over a timescale that is shorter than gene expression.
This permits a modeler to study a metabolic pathway without considering
the effect of changes in gene expression.

The separation between the internal and external variables depends ulti-
mately on practical considerations and the particular questions that the
experimenter and modeler wish to answer. However, once the choice is
made, the separation is strictly adhered to during the course of a study.
This means for example that the environment surrounding the physical
system will, by definition, be unaffected by the behavior of the system. If
for some reason parts of the environment do change as a result of the sys-

42 CHAPTER 2. INTRODUCTION TO MODELING

tem and can in turn affect the system in some way, then these parts should
be considered part of the system.

[Quantities J
Absolute Quantiaties
constants which can vary
' SP“‘_'e and ' Variables which
Time vary in space

and time

Independent .
(Variables J(State Variables x(l))

Not Allowed
to Vary
Garameters p(t)) (lnputs u(t)) (Outputs y(t))

Figure 2.3 Classification of quantitative terms.

Mathematical Descriptions of Models

Table 2.3 lists the many different ways in which a model can be repre-
sented and simulated. However one thing they all have in common is that
the models are expressed first in mathematical form. The form of this ex-
pression determines how the model will be constructed and how it will be
solved or simulated. In particular decisions must be made about how the

2.6. MODEL VARIABLES 43

variables and parameters in the system are best described. For example
the model variables can be described either using discrete or continuous
variables. For example the change in the level of water in a tank is more
reasonably described using a continuous variable such as the height. On
the other hand it might be more realistic to describe the dynamics of lion
predation on the Serengeti using a discrete model where individual lions
can be represented. It might not make much sense to refer to 34.67 lions in
a model. The choice of whether to use a discrete or continuous description
depends entirely on the system being studied and the questions posed.

Another important categorization is whether the model should be repre-
sented in a deterministic or stochastic form. A deterministic model is
one where if we repeated the simulation using the same starting conditions
we would get exactly the same result again. That is the future state of the
model is completely determined by its initial starting point. The model
of the water tanks filling up is an example of a deterministic model. In
contrast, each time we run a computer simulation of a stochastic model we
would get a slightly different outcome even though the starting conditions
are the same.

4 1\

A discrete variable is one that cannot take on all values within
a given numeric range. For example, the number of aeroplanes
in the sky at any one time is a discrete number. In statistics this
is generalized further to a finite set of states, such as true/false
or combinations in a die throw.

Continuous variables can assume all values within a given nu-
meric range. For convenience we will often represent a mea-
surement as a continuous variable. For example we will often
use a continues variable to represent the concentration of a so-
lute as it is unwieldy to refer to the concentration of a solute as
5,724,871,927,315,193,634,656 molecules per liter.

| J

The reason for this is that each step in the simulation is determined by
one or more random processes. To give an example, modeling lion pre-

44 CHAPTER 2. INTRODUCTION TO MODELING

dation on the Serengeti could be modeled as a stochastic process. It is
not guaranteed that a Lion will catch its prey every time, instead there is
a probability it will succeed. To model this process the computer sim-
ulation would throw a die to determine whether the Lion had succeeded
or not. Repeatedly running such a simulation again would naturally give
a slightly different outcome because the die throws would be different in
each run.

In systems biology stochastic models have been shown to be very impor-
tant in reproducing certain behaviors. A deterministic model based on
ordinary differential equations assumes a continuum of values for concen-
tration. This ignores the fact that cellular process operate at the molecular
level and concentrations could be described using discrete values repre-
senting the number of molecules. However, because we often deal with
systems containing tens of thousands of particles we assume that we can
describe concentration as a continuous variable and therefore differential
equations are quite suitable for these situations. For systems where the
particulate number is very low, of the order of tens of particles, the use a
continuum measure might seem unreasonable. However, an additional and
more important problem arises when dealing with low particulate num-
bers. At low concentrations, Brownian motion becomes a significant fac-
tor in determining reaction rates. The time at which a molecule binds or is
transformed, becomes a probabilistic property. As a result of these factors,
models of systems containing low particulate numbers are better modeled
using a stochastic approach [123, 93].

()

A deterministic model is one where a given input will always
produce the same output. For example, in the equation, y = x2,

setting x to 2 will always yield the output 4.

A stochastic model is one where the processes described by the
model include a random element. This means that repeated runs
of a model will yield slight different outcomes.

| J

We can now therefore classify a model as a combination of the above at-

2.6. MODEL VARIABLES 45

tributes. The water tank model uses a deterministic, continuous approach.
The lion model might use a discrete and stochastic approach. Table 2.1
shows the four combinations and example where each combination might
be appropriately used.

Type Example
Continuous/Deterministic Projectile motion
Continuous/Stochastic Brownian motion
Discrete/Deterministic Large population dynamics
Discrete/Stochastic Small population dynamics

Table 2.1 Examples of different kinds of model

Forcing Functions

As described earlier, it is common to make sure that the surroundings do
not change during the duration of the study. For example we might make
sure that the pH remains constant by using a buffer solution. The key point
is that the experimenter has complete control over the experiment. In some
cases it is useful for an experimenter to change the surrounding conditions
in a controlled fashion. For example, he/she might slowly increase the
concentration of an administered drug or make a step change in a variable
such as the concentration of an enzyme. In systems theory such controlled
changes are often called forcing functions.

Intensive and Extensive Properties.

In science a distinction is made between physical quantities termed inten-
sive and extensive. An intensive property is a physical quantity whose
value does not depend on the size of the system. Examples include pres-
sure, density, concentration and temperature. An extensive property is a
physical quantity whose value does depend on the size of the system, ex-
amples include mass, volume, energy and entropy.

46 CHAPTER 2. INTRODUCTION TO MODELING

Environment - ~
B1,B>, B, ...
(:_’
$1,82, 85, ...
L System)
Figure 2.4 System and Environment: S, S»,S;,... are state variables
that may change during the evolution of the system; By, B>, Bj,... are

boundary variables that are clamped to certain values by the observer. The
exchange arrows represent the exchange of mass between the environment
and the system.

2.7 Model Parameters

So far, only floating and boundary variables have been introduced as mea-
surable quantities in the system. The floating variables are quantities that
evolve in time and the boundary variables are concentrations or voltages
that are clamped by the observer or under the control of a forcing function.
There is a third set of quantities which are often called the system pa-
rameters. These include the various kinetic constants and enzyme activity
factors whose values are determined by a combination of thermodynamic,
physical or genotypic properties. Some system parameters will appear in
the reaction rate laws as kinetic constants, others will be related to physical
characteristics such as the volume of the system (assuming the volume is
constant during the study period). As with boundary variables, the system
parameters are in principle under the control of the experimenter and are
not a function of the model itself. One can imagine for example changing
kinetic constants via site directed mutagenesis or changing enzyme activi-
ties by altering promoter efficiencies. The actual choice of system param-
eters in any particular model will depend on physical limitations and the

2.7. MODEL PARAMETERS 47

question being considered by the researcher.

Example Figure 2.5 illustrates a simplified model of glycolysis. The cor-
responding Table 2.2 lists the various variables and parameters that have
been identified in the model. The concentration of glucose and ethanol
are assumed to be boundary variables, that is controlled by the observer.
This can be arranged by supplying glucose from a large volume compart-
ment so that during its consumption there is only a negligible change in its
concentration. Likewise we assume that ethanol is discharged into a large
volume.

In the model another set of concentrations that are assumed to be constant
are the NAD and NADH cofactors. This may be an unreasonable assump-
tion to make because we know that the redox potential can change. We
must assume here that the model builder has good reason for making this
assumption and will make this explicit when the model if formally pub-
lished. It is important that the model builder be specific about these deci-
sions and why they were made. Such choices are necessary when building
a model and great care should be made when making them. One simple
way to justify this assumption is that if the model adequately predicts ex-
periments that are of interest to the experimenter then it seems reasonable
that a floating redox potential is not important. However as demands on the
model to make further predictions expands there may come a time when
the model fails and assumptions such as the fixed redox potential may need
to be revisited.

The modeler also makes an additional assumption about ATP. Since gly-
colysis is ostensibly the pathway for generating ATP, some way to simulate
ATP consumption is necessary, this is achieved by including a single step
that hydrolyzes ATP to ADP even though we know that ATP consumption
is a complex process involving many separate reactions. The response of
the pathway to changing ATP demand can be simulated by perturbing the
ATP demand step. The assumptions made in building this model may
appears to be completely unreasonable but one sure test is to determine
how well the model reproduces current knowledge about the system and
whether the model can make useful predictions that can be later shown to
be correct. If either of these tests fail then we know that the assumptions

48 CHAPTER 2. INTRODUCTION TO MODELING

NAD NADH NADH NAD
GlucoseN F-16-BisP —< G3P Pyruvate M Ethanol

ATP ADP 2ADP 2ATP

ATP ——> ADP + Pi

Figure 2.5 A simplified glycolytic pathway. Many reactions have been
condensed and ATP consumption has been simplified to a single process
ATP — ADP + Pi

State Variables System Parameters Boundary Variables

F-16-BisP Kinetic Constants ~ Glucose
G3P Enzyme Activities Ethanol
Pyruvate Volume NAD
ATP Temperature NADH
ADP Pi

Table 2.2 Variables and parameters for the simplified glycolytic
model 2.5. We assume that glucose and ethanol are clamped by the ob-
server using large volume sinks. We assume that during the period of
study that the concentrations of NAD and NADH remain essentially un-
changed. F-16-BisP = Fructose-1,6-bisphosphate; G3P = Glyceraldehyde-
3-Phosphate; Pi = Phosphate

2.7. MODEL PARAMETERS 49

about the model need to be amended. One very important point to make. It
is easy to look on a model and state that it is unrealistic because it misses
out certain features. However, is unrealistic if it fails to be useful, i.e.
explain current knowledge and make useful predictions.

The realism of a model can only be judged with respect to its
purpose.

Steps in Building a Model

To summarize we can break down the approach to building a model into at
least four stages.

Define the system boundaries.

Define the simplifying assumptions.

Invoke physical laws to describe the system processes.

Test (validate) the model against experimental data.

Different Ways to Represent Physical Models

The tank model described in section 2.4 was built using a set of ordinary
differential equations (ODEs) and solutions to these equations were ob-
tained using a digital computer. There are however many other ways to
build and find solutions to models. Table 2.3 lists some of the more com-
mon and interesting approaches that people have used in the past to con-
struct and simulate models.

Table 2.3: Different ways to construct and solve physical models

Electrical Circuits General purpose analog computer [109]
WWII V2 guidance system [121]
Neuromorhpic electronics [13, 106]

50 CHAPTER 2. INTRODUCTION TO MODELING

Mechanical and Fluid Slide rule [119]
Curta [112]
Tide predicting machine [120]
Computing projectile trajectories [118]
Differential analyzer (solves ODEs) [113]
Antikythera mechanism (planetary motion) [110]
Water tanks - MONIAC economic model [116]

Purely Mathematical Algebraic Equations
Linear differential equations
Linear difference equations
Partial differential equations
Probabilistic models
Statistical models

Digital Computer Solving ODEs and PDEs
Agent based models (multicellular systems)
Cellular automata [111]
Emergent systems (Ant models) [114]
Fractal models [115]
Neural networks [117]

2.8 Dimensions and Units

Variables and parameters that go into a model will be expressed in some
standard of measurement. In science the recognized standard for units are
the SI units. These include units such as the meter for length, kilogram
for mass, second for time, Joules for energy, kelvin for temperature and
the mole for amount. The mole is of particular importance because it is a
means to measure the number of particles of substance irrespective of the
mass of substance itself. Thus 1 mole of glucose is the same amount as 1
mole of the enzyme glucose-6-phosphate isomerase even though the mass
of each type of molecule is quite different. The actual number of parti-

2.8. DIMENSIONS AND UNITS 51

cles in 1 mole is defined as the number of atoms in 12 grams of carbon-12
which has been determined empirically to be 6.0221415 x 10?3, This defi-
nition means that 1 mole of substance will have a mass equal to the molec-
ular weight of the substance, this makes is easy to calculate the number of
moles using the following relation

mass
moles =

molecular weight

The concentration of a substance is expressed in moles per unit volume
and is usually termed the molarity. Thus a 1 molar solution means 1 mole
of substance in 1 litre of volume.

Dimensional Analysis

Dimensional analysis is a simple but effective method for uncovering mis-
takes when formulating kinetic models. This is particularly true for con-
crete models where one is dealing with actual quantities and kinetic con-
stants. Conceptual models are more forgiving and don’t usually require
the same level of attention because they tend to be simpler.

Amounts of substance is usually expressed in moles and concentrations
in moles per unit volume (mol /~1). Reaction rates can be expressed ei-
ther in concentrations or amounts per unit time depending on the context
(mol t~1, mol /=1 ¢~ 1).

Rate constants are expressed in differing units depending on the form of
the rate law, the rate constants in simple first order kinetics are expressed
in per unit time (1), while in second order reactions the rate constant is
expressed per concentration per unit time (mol~! #~1).

In dimensional analysis, units on the left and right-hand sides of expres-
sions must have the same units (or dimensions). There are certain rules
for combining units when checking consistency in units. Only like units
can be added or subtracted, thus the expression S + k1 cannot be summed
because the units of S are likely to be mol /~! and the units for k1, r~!.
Even something as innocent looking as 1 + S can be troublesome because
S has units of concentration but the constant value *1’ is unit-less. Quanti-
ties with different units can be multiplied or divided with the units for the

52 CHAPTER 2. INTRODUCTION TO MODELING

overall expression computed using the laws of exponents and treating the
unit symbols as variables.

Example 2.2

Determine the overall units for the expression, k; S/ K, where the units for each
variable are kq (¢! [), S(mol [~1) and K, (mol /~1).

We first write out the expression in terms of the individual units:
¢t~ mol/(mol [71)

by treating the symbols are algebraic variables we can see that the symbol mol
will cancel and using exponents rules we can bring the /~! term up to the the

denominator to yield:
112

In exponentials such as e*, the exponent term must be dimensionless, or
at least the expression should resolve to dimensionless, thus ¥’ is permis-
sible but e* is not if for example k is a first-order rate constant. Trigono-
metric functions will always resolve to dimensionless quantities because
the argument will be an angle which can always be expressed as a ratio of
lengths which will by necessity have the same dimension.

2.9 Classification of Models

In addition to classifying models as discrete/continuous and detemrinsitic/s-
tochastic there are additional properties of models that can be used to cat-
egorize them (Table 2.4).

Dynamic and Static Models

A static model is one where the variables of the system do not change in
time. For example, a circuit made up of only resistors can be modeled as
a static system because there are no elements in the circuit that can store
or dissipate charge thus currents and voltages are considered instantaneous
without any time evolution. Most interesting model are dynamic.

2.9. CLASSIFICATION OF MODELS 53

1. Linear or Non-Linear

2. Dynamic or Static

3. Time invariant or time dependent

4. Lumped or distributed parameter models

Table 2.4 Additional categories of models

Time Invariant Systems

A time invariant model is one where the model does not explicitly depend
on time. This means that given a time invariant model, running the model
at ¢ = 0 or # = 10 makes no different to the time evolution of the model.
If a parameter of the system depends on time then the model is called time
dependent. An example of a time dependent model is where we apply a
drug in the form of a pulse and the duration of the pulse depends on when
the drug is administered. An example of a time dependent non-biological
model is a parking lot where the price of a ticket depends on the time
of day. We will have more to say about time invariant systems in a later
chapter when we will talk about linear time invariant systems (LTT).

Lumped and Distributed Parameter Models

Many complex models can be approximated with a single number. For
example we often describe a resistor using a single value, its resistance.
In reality, the resistor has a length, a diameter and a chemical composi-
tion. The resistance is a function of all these properties that make up the
resistor. We could model the resistor by slicing up the resistor in to many
small compartments and compute the resistance as a systemic property. In
the former case we have what is called a lumped parameter model, in the
second case a distributed parameter model.

54 CHAPTER 2. INTRODUCTION TO MODELING

2.10 Linear and Non-Linear Models

When we use mathematics to describe physical systems there is a great
divide that separates on one side linear and on the other nonlinear models.
This separation is fundamental and places hard limits on what we can and
cannot do with mathematical analysis.

One one side we have linear systems, where inputs to a system result in
their weighted sum appearing in the outputs. The output is a superposition
of the inputs. The simplest linear system is given by the relation y =
ax, where x is the input and y the output. We know this is linear for
the following reason. Let us apply two separate inputs, x1 and x; to this
system. This gives us outputs, ax; and ax, respectively. If we now apply
the sum of the inputs, x1 + x» we get a(x; + x2) as the output, which as
we can see is simply the sum of the separate inputs.

axi +axy; = a(xi1 + x2)

This property is called the property of additivity and can be generalized
as follows. A mathematical model, f(x), shows additivity if the following
is true:

Sr+xa+..) = f(x)+ f(x2) +...

This states that the sum of multiple inputs applied simultaneously is equiv-
alent to applying the inputs separately. Nonlinear systems do not follow
this rule. Strictly speaking a linear system also needs to satisfy homo-
geneity (or scaling), that is, f(ax) = af(x). Combining additivity and
homogeneity gives us the general rule of linearity called superposition:

flaxy +bxo+...) = flaxy) + f(bxy) + ...

Any system that satisfies superposition is a linear system. Any system that
does not, is a nonlinear system. Table 2.5 illustrates some functions that
are nonlinear.

2.10. LINEAR AND NON-LINEAR MODELS 55

x" Yx

Xy sin(x)

e* log(x)

(dy/dy)" VmS/(S + Km)

Table 2.5 Examples of nonlinear functions

Example 2.3

Show that the function e” is nonlinear.

We first apply separate inputs, x; and x», to the function and compute the sum of
the output, that is:
e*l 4 ¢*2

We next take the sum of the inputs, x; + x» and apply the sum to the function,

that is:
ex1+x2

To obey additivity, the two expressions much be equal. However, e¥1 7% =
e*1e*2 which is not the same as e*! + e*2. Therefore e* is a nonlinear function.

Similarly we can also easily show that homogeneity (f(ax) = af(x)) is not true
because if should be evident that:

ae” ;é %

To appreciate the difference between linear and nonlinear functions, con-
sider the system y = x2. Let us apply two separate inputs, x; and x to
give outputs x% and x%. If we now apply the inputs simultaneously, that
isy = (x1 + x2)2, we obtain x% + x% + 2x1x2. We see that the out-
put is not simply x% + x% but includes an additional term, 2xjx2. This
term is the nonlinear contribution. Imagine that this difference now enters
further nonlinear processes, leading to further changes. Eventually the out-
put looks nothing like the input. This small change makes most nonlinear
systems difficult to understand and analyse.

Unless the system has an infinite number of solutions (degenerate) or has
the trivial solution (that is the solution is zero), linear systems will admit

56 CHAPTER 2. INTRODUCTION TO MODELING

only one solution. In contrast it is possible for nonlinear systems to admit
multiple solutions, that is given a single input, a nonlinear system can re-
gurgitate one of a number of possible distinct outputs. To makes matters
worse, in the majority of mathematical models we find in biochemical net-
works, it is not even impossible to find the solutions mathematically. That
is we cannot actually describe mathematically how an output depends on
an input other than by doing brute-force computer simulation. Understand-
ing nonlinear systems whether we find them in biology or elsewhere is a
huge unresolved problem.

Whereas there is a complete theory of linear systems, no such thing exists
for nonlinear systems. When dealing with nonlinear systems we are often
forced to use computer simulation.

There is one approach we can take that can help use deal with nonlinear
models. If we were to draw a nonlinear curve on a graph and zoom in
closer the curve would eventually look like a straight line; that is we can
turn a nonlinear system into a linear one but only in small regions of the
system’s behavior where linearity dominates. This process, is called lin-
earization and is a powerful technique for studying nonlinear systems.

2.11 Linearization

When modeling nonlinear systems, we have two options, to simulate or
to linearize. Simulation will be considered later, here we will briefly look
at a technique called linearization. To linearize a model means replacing
the nonlinear version with a linear approximation which is easier to un-
derstand. It should be emphasized that in the process we loose valuable
information but enough information is preserved to make linearization an
extremely useful and popular tool.

One of the most useful results in mathematics is the Taylor series (See
Appendix B for review). This is a way of approximating a mathematical
function by using an infinite polynomial series such as the following:

f(x) =co+c1x 4+ cax? +e3x> + ... 2.1)

2.11. LINEARIZATION 57

We can represent any continuous function using such a polynomial. For
example, we can represent sin(x) using the formula:

x3 X

sin(x):x—i—i-a—--- (2.2)
Without going into the details (See Appendix B) the Taylor series is a
means for defining the ¢; terms in the polynomial series (2.1) given any
continuous function. The Taylor series is always defined around some
operating point, x, and the distance from that operating point, x. The
Taylor series is given by:

af 13%f
Sx) = fxo) + a(x — Xo) + 2_!8x_2(x — %o)°
T —'anf(x—xo)”+... (2.3)
dx"

(. J

The various derivatives in the Taylor series must be evaluated at x,. For
this to work, we must be able to derive, at least in principle, all the deriva-
tives. This means the function f(x) must be continuous, that is there
should be no holes or sudden breaks (discontinuity) in the curve that the
function describes. The number of terms in the Taylor series determines
the degree of approximation, the fewer terms the more approximate the
series is. For example, the most approximate expression is given by using
only the first term, f(x,). However, f(x,) is a constant so this represents
a very poor approximation. To make the approximation more useful we
include the first two terms of the Taylor series:

f(x) ~ f(xo) + %(x — Xo) (2.4)

Provided x is close to x,, the approximation is good. For example, let us
form the Taylor series for the function, y = sin(x) around x, = 0. We

58 CHAPTER 2. INTRODUCTION TO MODELING

/\

4

-2+

Figure 2.6 Linearized sin(x) function represented by the straight line
through zero.

should recall that sin(0) = 0 and cos(0) = 1, then writing out the Taylor
series:
dsin(x,)

dax

1 02 sin(x)

TR x=0+...

y = sin(0) + (x—0)+

1 3 1 s
y=04+1x+0——x"+04+ —=x"+...

3! 5!
That is:
. x3 X
y=x- 31 + 5T

Note this is the same as equation 2.2. The linear approximation is given
by the first two terms:

d sin(x,)

y = sin(0) +
0x

(x—0)

Since sin(0) = 0 and dsin(xp)/dx = cos(0) = 1, the linear approxima-
tion is therefore y = x, a straight line running through the origin (Fig-
ure 2.6). We have linearized the sin function.

To illustrate linearization with another example consider the simple non-
linear function, y = x2. To linearize we must first choose an operating

2.11. LINEARIZATION 59

point around which we will linearize, for example, x, = 2. According to
the second term in the Taylor series we need to find the derivative, df /dx
so that the first two terms of the Taylor series (Equation 2.4) become:

f(x) = f(2) +2x(x —2) = 4 — 4x 4 2x?

This gives a second order polynomial as the approximation. To obtain
the linear approximation we evaluate the derivative at the operating point
(xo = 2), thatis df /dx = 2x = 4 so that the final linear approximation is
then given by:

fx)=4—4(x—-2)=4x—4

Figure 2.7 shows the original nonlinear function together with the linear
approximation.

40

30
=~ 20

10

0

Figure 2.7 Taylor series approximation of y = x? at the operating point,
Xo = 2

Equation 2.4 can also be written in the form
af
fx) >~ fla) + d—5x
x
where §x = (x — x,). If the equation f is a function of more than one

variable then additional terms appear. For example the linearization of
f(x,y) will give:

60 CHAPTER 2. INTRODUCTION TO MODELING

0 0
o) = G a—f8x + Yy 2.5)
5% ady

As before, the derivatives must be evaluated at the operating point.

Example 2.4
Linearize the following equation at x, = 2:
%3

x+1

y:

To linearize we must apply equation 2.4. We first compute, f(x,). Since x, = 2,
then:

Sf(xo) =8/3
Next we form the derivative df/dx:

df 2x3 +3x2
ox (x4 1)2

At x, = 2 the derivative is given by:

9f(2) _ 28

0x 9

Inserting f(x,) and the derivative into:
0
SO~ f0) + o= x)

yields:

8 28 8 28 56 28x —32
JORFT) =5ty — g =g

2.12. APPROXIMATIONS 61

Example 2.5
Linearize the following equation at x, = 1 and y, = 0:

f(x.y) =x*—2xy —sin(y)

To linearize a two dimensional system we must apply equation 2.5. We first com-
pute, f(x,, o). Since x, = 1 and y, = 0, then:

f(x0,¥0) =1

Next we form the two derivatives df/dx and df/dy:

a d
—f:2x—y —f:—2x—cos(y)
ax dy

At x, = 1 and y, = 0 the derivatives are given by:

af(1,0) _5 af(1,0) _

-3
ax dy

Inserting f(x,, y,) and the derivatives into:

0 0
SO = F o) + o= x0) + Ly~ 1)
X y

yields:
fx,y) ~2x—-3y—1

2.12 Approximations

By their very nature, models involve making assumptions and approxima-
tions. The best modelers are those who can make the most shrewd and
reasonable approximations without compromising a model’s usefulness.
There are however some kinds of approximations which are useful in most
problems, these include:

e Neglecting small effects.

62 CHAPTER 2. INTRODUCTION TO MODELING

e Assuming that the system environment is unchanged by the system
itself.

e Replacing complex subsystems with lumped or aggregate laws.
e Assuming simple linear cause-effect relationships where possible.

e Assuming that the physical characteristics of the system do not change
with time.

e Neglecting noise and uncertainty.

Neglecting small effects. This is the most common approximation to
make. In many studies there will always be parts of the system that have a
negligible effect on the properties of the system, at least during the period
of study. For example, the rotation of the earth, the cycle of the moon or
the rising and setting of the sun will most likely have a negligible influence
when studying the action of an enzyme. Assuming of course we are not
studying circadian rhythms.

Assuming that the system environment is unchanged by the system it-
self. This is a basic assumption in any study. The minute a system starts
to affect the environment in an uncontrolled way we have effectively ex-
tended the system boundaries to include more of the environment. It will
often be the case that the interface between the environment and the sys-
tem will not be perfect so that there will be some effect that the system has
on the environment. So long as this effect is small we can assume that the
environment is not affected by the system.

Replacing complex subsystems with lumped or aggregate laws. Lu-
mping subsystems is a commonly used technique in simplifying cellular
models. The most important of these is the use of aggregate rate laws,
such as Michaelis-Menten or Hill like equations to model cooperativity.
Sometimes entire sequences of reactions can be replaced with a single rate
law.

Assuming simple linear cause-effect relationships. In some cases it is
possible to assume a linear cause-effect between an enzyme reaction rate
and the substrate concentration, this is especially true when the substrate

2.13. EXAMPLE MODEL 63

concentration is below the K, of the enzyme. Linear approximations
make it much easier to understand a model.

Physical characteristics do not change with time. A modeler will of-
ten assume that the physical characteristics of a system do not change, for
example the volume of a cell, the values of the rate constants or the tem-
perature of the system. In many cases such approximations are perfectly
reasonable.

Neglecting noise and uncertainty. Most models make two important
approximations. The first is that noise in the system is either negligible
or unimportant. In many non-biological systems such an approximation
might be quite reasonable. However cellular phenomena often operate at
the molecular level. Biological systems are susceptible to noise generated
from thermal effects as a result of molecular collisions. For many systems
the large number of particles ensures that the noise generated in this way
is insignificant and in many cases can be safely ignored. For some systems
such as prokaryotic organisms, the number of particles can be very small.
In such cases the effect of noise can be significant and therefore must be
included as part of the model.

2.13 Example Model

Before we leave this chapter let us look at building a model of a simple
chain of four enzyme catalyzed reactions (Figure 2.8). Let us construct a
mathematical model of this system.

U1 U2

Si Sh

S3

Figure 2.8 Simple Straight Chain Pathway.

The first thing we can do is decide where the boundary of the pathway
is, assuming there will be one. A convenient place to have a boundary
is the start and end metabolite of the pathway, that is S7 and S5. We
will assume that these two metabolites are fixed and are unaffected by the

64 CHAPTER 2. INTRODUCTION TO MODELING

system (Figure 2.9).
System
Si > $; — §3 —> Sy —+ S;
Surroundings

Figure 2.9 Simple Straight Chain Pathway with system shown in a box
and S and S5 outside the system. We assume S; and S5 are fixed.

The metabolites that can change in time include S», S3 and S4. Recall that
such metabolites are called the state variables or floating species. We
can now write the differential equations that represent the rates of change
of S, §3 and S4. Note that there will be no differential equations assigned
to S1 and S5 because these are fixed and unchanging. According to mass-
balance (Cover in more detail in the next chapter) the following differential
equations must be true:

dsS»
o T
dSs
o T
dSy
o v

Next we must decide on the rate laws, v1, v2, v3 and v4. This is possibly
the most difficult part to building a model and a detailed examination of
the literature will need to be done to decide what are the most appropriate
rate laws to use. The companion text book, “Enzyme Kinetics for Systems
Biology” [92] gives much more detail on rate laws in general. Here a
mixture of rate laws will be used to illustrate the kinds of rate laws that
one might employ. For example a simple reversible mass-action rate law
may be used for the first reaction vy, that is:

V1 = k151 — szz

2.13. EXAMPLE MODEL 65

This rate law introduces two new parameters, the rate constants, k1 and
k2. These are fixed and unaffected by the model. For the second reaction,
let us use a simple allosteric regulated rate law. That is we will assume
that the reaction v, is allosterically inhibited by S4. For this we can use
the simplest exclusive Monod, Wyman, Changeax model [75]:

Sy (1 + S2/Km)*
V2 =V 4
(14 S2/Km)*+ L (1 + S4/Ky)

where the Hill coefficient is equal to four, L is the allosteric constant, K7 is
the inhibition constant, K, is the substrate concentration at half-maximal
activity and V;, the maximal velocity.

The third rate law will be a simple irreversible but product inhibited Michaelis-
Menten rate law, that is:

S3
S3+ Km (1 + S3/Kp)

where V;;, is the maximal velocity of the reaction, K, is the Michaelis
constant and K, is the product inhibition constant. The last reaction, v4
will be assigned a simple irreversible mass-action rate law:

Vg4 = k3S4

where k3 is the rate constant. In total the model has ten parameters, two
boundary species and three state (or floating) species. The model can be
completed by assigning values to all the parameters, boundary species and
initial conditions to the state variables. Once the model is described it can
be entered into a simulation tool such as Jarnac [91], See Appendix E or
JDesigner [96, 6] and the evolution of the system in time studied.

Further Reading

1. Sauro HM (2011) Enzyme Kinetics for Systems Biology. ISBN:
978-0982477311

66 CHAPTER 2. INTRODUCTION TO MODELING

Exercises

1. Choose from the following options. A model is:

(a) an attempt to form an exact replica of reality.
(b) something that bears no resemblance to the real system.

(c) asimplification of the real world.
2. List the three most desirable attributes of a model.

3. When we “validate” a model which of the following do we most
likely mean:

(a) We show that the model represents the truth about the real sys-
tem.

(b) We increase our confidence in the model‘s predictive power.

(c) We prove that the model is correct.

4. Explain the difference between accuracy and predictability in rela-
tion to the quality of a model.

5. The authors of a published biochemical model claim that their model
has been validated, what do they mean by this?

6. E. coli can be considered a cylindrical volume with length 2 um
and diameter 1 pum. A reaction is known to occur in E. coli with an
intensive rate of 0.5 mmol s~! /=1, what is the rate of reaction per
volume of E. coli? If Avogadro’s number is 6.022 x 10?3, express
the rate in terms of molecules converted per second per E. coli.

7. Show that the following functions are nonlinear with respect to x:
(a) sin(x)
(b) e*
©) Vimx/(x + Km)

8. Linearize the following functions:

2.13. EXAMPLE MODEL

67

(@) 4x2 4+ 6x —10atx =1
) Viux/(x + Kiy) at x = 0and x = Ky

68

CHAPTER 2. INTRODUCTION TO MODELING

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.96,
www.sys-bio.org

Cellular Networks

The study of cellular networks is one of the defining characteristics of
systems and synthetic biology. Such networks involve the coordinated in-
teraction of thousands of molecules that include nucleic acids, proteins,
metabolites and other small molecules. Descriptions of these elaborate
networks can be found in text books, on wall charts, and more recently in
databases such as EcoCyc, RegulonDB, KEGG or as shown in Table 3.1.

3.1 Overall Organization

Biological networks can be organized into three broad categories (Fig. 3.4),
gene regulatory, protein and metabolic networks. In the metabolic cat-
egory, small molecules are chemically transformed by enzymes. These
molecules — or metabolites — serve either as energy sources or as build-
ing blocks for more complex molecules, particularly polymers such as
polysaccharides, nucleic acids and proteins.

The protein networks constitute a major part of the decision making and
nano-machine apparatus of a cell. We can divide the decision making pro-
tein networks into two subgroups. One subgroup involves transcription
factor proteins that regulate gene expression, forming what are called gene

69

70 CHAPTER 3. CELLULAR NETWORKS

Table 3.1 Online E. coli resources

Online Resource URL

EcoCyc http://ecocyc.org/

RegulonDB http://regulondb.ccg.unam.mx/
KEGG http://www.genome. jp/kegg/
STRING http://string.embl.de/

regulatory networks (GRNs). The second subgroup constitutes the sig-
nalling pathways that integrate information about the internal and external
environments and modulate both the metabolic and gene regulatory net-
works.

The metabolic, protein, and gene regulatory networks each have a char-
acteristic mode of operation and differ by the molecular mechanisms em-
ployed and their respective operating time scale. In general, metabolic
networks operate on the smallest time scale, followed by protein networks
and gene regulatory networks.

This picture is of course a simplified view. For example it omits the ex-
tensive RNA network that may be present particularly in eukaryotic cells.
Protein signalling networks are also involved in a variety of other related
functions such as cytoskeleton control and cell cycle regulation. In addi-
tion, there is considerable overlap between the different systems with gene
regulatory networks and protein control networks interlinked [11].

3.2 Network Representation

There are different ways to represent cellular networks depending on how
the information will be used and what kinds of questions are asked. Tra-
ditionally cellular networks have been described using a stoichiometric
formalism. Such networks are mechanistic in nature, consistent with the
laws of mass conservation and will often include kinetic laws describing
transformations of species from one form to another through binding/un-

http://ecocyc.org/
http://regulondb.ccg.unam.mx/
http://www.genome.jp/kegg/
http://string.embl.de/

3.3. METABOLIC NETWORKS 71

binding or molecular reorganization. In recent years an alternative repre-
sentation, which might be termed non-stoichiometric, has gained signif-
icant popularity with the advent of high-throughput data collection. Non-
stoichiometric networks, of which there are a great variety, include interac-
tion networks which describe the relationship, usually via some physical
interaction but sometimes also functional, between molecular species or
functional entities such as genes or proteins. Non-stoichiometric networks
tend to be more course grained compared to stoichiometric networks but
their study has proved to be very popular due in large part to the availabil-
ity of vast new data sources. That, coupled with the unprecedented interest
in networks in general has made the study of non-stoichiometric networks
an intellectually fruitful area of study.

In this book we will be primarily concerned with modeling sto-
ichiometric networks.

3.3 Metabolic Networks

The first cellular networks to be discovered were the metabolic pathways
such as Glycolysis in the 1930s and the Calvin cycle in the 1940s. The
first metabolic pathways were elucidated by a combination of enzymatic
inhibitors and the use of radioisotopes such as Carbon-14. The Calvin
cycle for example was discovered by following the fate of carbon when
algae were exposed to 1*C-labeled CO,. With the development of micro-
bial genetics, significant progress was made in uncovering other pathways
by studying mutants and complementing different mutants of a given path-
way to determine the order of steps. The reaction steps in a metabolic
pathway are catalysed by enzymes and we now know there are thousands
of enzymes in a given organism catalyzing a great variety of pathways. The
collective sum of all reaction pathways in a cell is referred to as metabolism
and the small molecules that are interconverted are called metabolites.

72 CHAPTER 3. CELLULAR NETWORKS

Traditionally, metabolism is classified into two groups, anabolic (synthe-
sis) and catabolic (breakdown) metabolism. Coupling between the two
metabolic groups is achieved through cofactors of which a great variety
exist. Two widely distributed cofactors include the pyridine nucleotides
in the form of NADT and NADP1, and the adenine nucleotides in the
form of ATP, ADP and AMP. These cofactors couple redox and phosphate
respectively by forming reactive intermediates that enables catabolism to
drive anabolism. A primary catabolic process is cellular respiration where
starting molecules such as glucose are oxidized in a stepwise fashion. The
energy released is captured in the form of ATP and the oxidized products
of water and carbon dioxide are released as waste. ATP can be used in turn
to drive anabolic processes such as amino acid or lipid biosynthesis. In
general, metabolic pathways tend to be regulated via allosteric regulation.
This is where a metabolite can regulate the reaction rate of an enzyme by
binding to a site on the enzyme other than the catalytic site. Such interac-
tions form a network of feedback and feedforward regulation. Figure 3.2
shows a metabolic pathway of glycolysis from Lactococcus lactis. On the
left, glucose enters the cell which is then converted in a series of reactions
to ethanol and a variety of other small molecules.

Metabolic networks are by far the fastest (excluding ion transfer mech-
anisms) in terms of their response to perturbations and can operate in a
time scale from microseconds to seconds. This reflects the need to rapidly
adjust the supply of molecular building blocks and energy as supply and
demand fluctuate. Physically the rapid response of metabolic networks is
achieved by allosteric control where the fast diffusion of small molecules
can bind and rapidly alter the activity of selected enzymes.

Figure 3.3 shows a section of the glycolytic pathway which converts glu-
cose to pyruvate with the production of ATP and NADH. The diagram
also shows the many negative and positive feedback and feedforward reg-
ulatory loops in glycolysis. Not all of these are present in all organisms,
however many are. Note the six regulatory signals that converge on 6-
Phosphofructose-1-kinase (also known as phosphofructokinase) and Fruc-
tose Bisphosphatase (Labelled 2 and 3). One of the aims of metabolic
control analysis is to quantify regulation and to understand the operational
principles of such control.

3.4. PROTEIN NETWORKS 73

\[o]

Stoichiometric Stoichiometric

Figure 3.1 Cellular networks are often represented using two common ap-
proaches, non-stoichiometric and stoichiometric. Non-stoichiometric net-
works are characterized by a lack of stoichiometric information and mass
conservation. Stoichiometric networks are classified according whether
they are elementary or not. Elementary networks are those where the re-
actions cannot be broken into simpler forms. Non-elementary networks
may have one or more reaction steps which represent an aggregate of two
or more elementary reactions, the aggregation being dependent on some
particular assumptions such as quasi-steady state or equilibrium.

3.4 Protein Networks

Protein networks are by far the most varied networks found in biologi-
cal cells. They range from proteins involved in controlling gene expres-
sion, the cell cycle, coordinating and processing signals from the internal
and external environments, to highly sophisticated nano-machines such as
parts of the ribosome or the bacterial flagella motor.

Protein networks can be studied on different levels, broadly classified as ei-
ther stoichiometric or non-stoichiometric networks. The non-stoichiometric
networks can be as simple as considering the physical associations be-
tween different proteins (often through the formation of protein complexes).
Such networks, also termed interaction networks, have been elucidated

74 CHAPTER 3. CELLULAR NETWORKS

@ 1y
e 09

Cellwall

€l
@

&)

Figure 3.2 Metabolic Pathway: Metabolic pathway image from JWS on-
line (Jacky Snoep) with permission. The pathway depicts the glycolytic

pathway from Lactococcus lactis using the Systems Biology Graphical
Notation (SBGN) [60, 44].

3.4. PROTEIN NETWORKS 75

Glucose

—|©

b——— Glucose 6-P

'

Fructose 6-P =P Fructose 2,6-P2
@, *: |
—i|) ®
1 o |-

Frutose 1,6-P2

L—— D ATP v 2 NADH
2 Phosphoenolpyruvate
— —2ATP / @

[P

—

2 Pyruvate =——Jpp Alanine

®

2 Citrate

®
\

Figure 3.3 A section of glycolysis with negative and positive regulation
shown. 1. Hexokinase; 2. 6-Phosphofructose-1-kinase; 3. Fructose bis-
phosphatase; 4. Pyruvate kinase; 5. Entry to Citric acid cycle; 6. To
oxidative respiration.

largely with the help of high-throughput methods. An interaction is formed
if two proteins, A and B are known to associate.

Another descriptive level involves functional and stoichiometric networks
formed from a consideration of specific stoichiometric binding events, co-
valent modification (most notably phosphorylation) and degradation. Here
two protein A and B might form a complex with a stoichiometric relation-

76 CHAPTER 3. CELLULAR NETWORKS

Network Type Timescale

Gene Regulatory Network

Genes
Minutes to
External Factors Hours
—_—
Proteins (TFs) <=
Protein Signalling Network
—— | Proteins <— Proteins <— seconds to
Minutes

Metabolic Network

Microseconds to

——| Metabolites
Seconds

Figure 3.4 Network Overview. The figure illustrates the three main net-
work layers, metabolic, protein and gene. TF — Transcription Factors.

ship and given association constant.

Protein-Protein Networks

Work on uncovering protein networks has be ongoing since the 1950s and
considerable detail has accumulated on many different pathways across
different organisms. Traditional methods, though laborious [26, 24] have
been used extensively to gain detailed knowledge on phosphorylation sites,
protein structure, the nature of membrane receptors and the constitution
and function of protein complexes. More recently high-throughput meth-
ods, though more course grained, have been used to elucidate large swaths

3.4. PROTEIN NETWORKS 77

of protein-protein interaction networks. For example, in yeast, large scale
studies have identified approximately 500 different protein complexes [36,
57] and their relationships to each other.

A popular high-throughput technique that has been used to uncover protein-
protein interaction networks is the Yeast two-hybrid method [30, 84]. Other
methods such as phage display [101, 39] and particularly affinity purifica-
tion and mass spectrometry have also been successfully employed [36, 57].
The Yeast two-hybrid method (Figure 3.5) is based on the idea that eu-
karyotic transcriptional activators consist of two domains, a DNA binding
domain (DB) and an activation domain (AD). The activation domain is re-
sponsible for recruiting the RNA polymerase to begin transcription. What
is remarkable is that the two domains do not have to be covalently linked
in order to function correctly, they need to be in close proximity. The Yeast
two-hybrid method is based specifically on this property.

Assume we want to know whether two proteins, X and Y interact with each
other. In the two-hybrid method, protein X is fused with the DB domain
(known as the bait protein) and the second protein, Y, is fused with the
AD domain (known as the prey protein). These two fused proteins are
now expressed in Yeast. If the two proteins X and Y interact in some way,
they will bring the DB and AD domains close to each other resulting in
an active transcriptional activator. If the gene downstream of the DNA
binding sequence is a reporter gene, then the interaction of X and Y can be
detected.

A common reporter gene is the lacZ gene which codes for 8-galactosidase
and which produces a blue coloring in Yeast colonies through the metabolism
of exogenously supplied X-gal (5-bromo-4-chloro-3-indolyl-f-D-galact-
oside).

There are some caveats with the yeast two-hybrid method however. Al-
though two proteins may be observed to interact, the protein in their natu-
ral setting may not be expressed at the same time or may be expressed but
in different compartments. In addition, using the method to identify in-
teractions between non-yeast proteins may be invalid because of the alien
environment of yeast cells. As with many high-throughput methods cau-
tion is advised when interpreting the data.

78 CHAPTER 3. CELLULAR NETWORKS

ﬁ
wiriee \MYDHDIVDIVDDIVDY

Reporter Gene
Bait

st \WMIOJOIVIVIOIVIN

Reporter Gene

Prey

»- 8
Ap-prey NIV
Reporter Gene
Bait Prey
———
B0-A0 \IMIAMAMNMNIDINN

Reporter Gene

Figure 3.5 Yeast two-hybrid. The wild-type transcription factor is com-
posed of two domains, BD and AD. Both are essential for transcription.
Two fusion proteins are made, BD-Bait and AD-Prey. Bait and Prey are
the two proteins under investigation. If the two protein Bait and Prey in-
teract, BD and AD are brought together resulting in a viable transcription
factor that can be used to express a reporter gene.

Using techniques such as yeast two-hybrid, one of the first interaction
graphs to be published was the protein interaction graph of Saccharomyces
cerevisiae [107, 50]. Subsequent analysis of this map was conducted by
Jeong et al. [51] and included 1870 proteins nodes and 2240 interaction
edges. Such graphs give a birds-eye view of protein interactions (Fig. 3.6).

3.4. PROTEIN NETWORKS 79

Figure 3.6 The poster child of interaction networks, one of the earliest
yeast protein interaction networks generated from yeast two-hybrid mea-
surements. Each node represents a protein and each edge an interaction.
In addition, the graph nodes have been annotated such that red indicate
lethal phenotypic effect if removed, green non-lethal, orange slow growth,
and yellow unknown. Adapted from Barabdsi and Oltvai [3] but originally
published in arXiv and Nature [51].

Signalling and Control Networks

Many protein-protein networks operate as signal processing networks and
are responsible for sensing external signals such as nutritional (for example
by changes in glucose levels) or cell to cell signals such as insulin. Other
signalling networks include control networks that are concerned with mon-
itoring and coordinating internal changes, the most well known of these
includes the cell cycle control network. Many external signals act by bind-
ing to cell-surface receptor proteins such as the large family of receptor
tyrosine kinases and G-protein coupled receptors [56]. Once a signal is in-
ternalized through the cell-surface receptors, other proteins, including pro-
tein kinases and phosphatases continue to process the signal often in coor-

80 CHAPTER 3. CELLULAR NETWORKS

dination with other signaling networks. Eventually the signalling pathway
terminates on target proteins that leads to a change in the cell’s behavior.
Such targets can include a wide variety of processes such as metabolic
pathways, ion channels, cytoskeleton, motor proteins and gene regulatory
proteins.

The molecular mechanisms employed by signalling and control pathways
include covalent modification, degradation and complex formation. Co-
valent modification, in particular, is a common mechanism used in sig-
naling networks and includes a variety of different modifications such
as phosphorylation, acetylation, methylation, ubiquitylation, and possibly
others [14]. As a result the structure and computational abilities [97] of
such networks is likely to be extremely elaborate. It has been estimated
from experimental studies that in E. coli, 79 proteins can be phosphory-
lated [65] on serine, threonine and tyrosine side groups whereas in Yeast,
4000 phosphorylation events involving 1,325 different proteins have been
recorded [86].

The cell cycle control network is an excellent example of a sophisticated
protein control network that coordinates the replication of a biological cell.
The cell cycle includes a number of common molecular mechanisms that
are found in many other protein networks. These can be grouped into three
broad types: phosphorylation, degradation and complex formation. Phos-
phorylation is a common mechanism for changing the state of a protein and
involves phosphorylation on a number of sites on the protein surface in-
cluding serine/threonine and tyrosine. In prokaryotes, histidine, arginine,
or lysine can also be phosphorylated. Phosphorylation is mediated by ki-
nases. The Human genome may have over 500 kinase encoding genes [68].
The effect of phosphorylation is varied but most often causes the altered
protein to change catalytic activity, to change the protein’s ‘visibility’ to
other proteins, or to mark the protein for degradation. For example, src is a
tyrosine kinase protein involved in cell growth. It has two states, active and
inactive. When active, it has the capacity to phosphorylate other proteins.
Deactivation of src is achieved by phosphorylation of a tyrosine group on
the C-terminal end of the protein. Dephoshorylation of the tyrosine group
by tyrosine phosphatases results in the activation of the protein.

Phosphorylation can also be used to inactivate enzymes such as glycogen

3.4. PROTEIN NETWORKS 81

synthase by the glycogen synthase kinase 3 protein. In the Yeast cell cycle,
the protein Weel is phosphorylated and inactivated by the complex Cdc2-
Cdc13. Active Weel in turn (i.e. the unphosphorylated form) can inactivate
Cdc2-Cdc13 by phosphorylating the Cdc2 subunit.

In addition to changing the activity of proteins, phosphorylation can also
be used to mark proteins for degradation. For example, the protein Rum1
that is part of the Yeast cell cycle control network can be phosphorylated by
Cdc2-Cdc13. Once phosphorylated, Rum1 is degraded. Degradation itself
is an important mechanism used in protein networks and allows proteins
to be rapidly removed from a network according to the cell state. Degra-
dation is usually mediated by ubiquitylation. For example, Cdc2-Cdc13,
via Ste9 and APC is marked for degradation by ubiquitylation (Rum1 is
similarly processed once phosphorylated). Once marked this way, such
proteins can bind to the proteasome where they are degraded. Finally,
binding of one protein to another can change the target protein’s activ-
ity or visibility. An example of this is the inactivation of Cdc2-Cdc13 by
Rum1. When unphosphorylated, Rum1 binds to Cdc2-Cdc13, rendering
the resulting complex inactive.

Different combinations of these basic mechanisms are also employed. For
example, phosphorylation of complexes can lead to the dissociation of the
complex, or the full activity of a protein may require multiple phospho-
rylation events. Although signalling networks can appear highly complex
and varied, most of them can be reduced to the three fundamental mecha-
nisms of covalent modification, selective degradation and complex forma-
tion (Fig 3.7).

These examples highlight fundamental mechanisms by which protein con-
trol networks can be assembled into sophisticated decision making sys-
tems.

In higher eukaryotic cells, particulary human, around 2% of the protein-
coding part of the genome is devoted to encoding protein kinases, with
perhaps 10% of the coding region dedicated to proteins involved in sig-
nalling networks. It has also been suggested that possibly as much as 30%
of all cellular proteins in yeast and human can be phosphorylated [22].

The actual size of the networks themselves is however even larger that

82 CHAPTER 3. CELLULAR NETWORKS

; Q Complex Formation

T Phosphorylation
N
—@ ——a—>()
T Dephosphorylation
(@)
—

— Degradation of a
Q _4 0-0-0-® — complex

Degradation of a
~® _@_ - phoshporylated form

Figure 3.7 Fundamental Protein Mechanisms.

these numbers suggest because of the significant number of covalent vari-
ants and binding permutations. For example, p53, the tumor suppressor
protein, has between 17 and 20 phosphorylation sites alone [105]. If ev-
ery combination were phenotypically significant, (as unlikely as that might
be), this amounts to at least 131,072 different states.

Ptacek and Snyder [87] have published a review on elucidating phospho-
rylation networks where more detailed information is provided.

3.5 Gene Regulatory Networks

In prokaryotes, the control of gene expression is relatively well under-
stood. Transcription factors control gene expression by binding to special
upstream DNA sequences called operator sites. Such binding results in the

3.5. GENE REGULATORY NETWORKS 83

_ LSM1

|
j"‘fncp‘\l‘ 3)R\’DCPZ
\’\f’ma///{u Pio
/ -
/RPMZ

Figure 3.8 A Small Protein-Protein Interaction Map. This image was
taken from the STRING web site (Search Tool for the Retrieval of Inter-
acting Genes/Proteins, http://string.embl.de/). The image displays
a small segment of the protein interaction map centered around LEU3,
the transcription factor that regulates genes involved in leucine and other
branched chain amino acid biosynthesis.

activation or inhibition of gene transcription. Multiple transcription factors
can also interact to control the expression of a single gene. Such interac-
tions can emulate simple logical functions (such as AND, OR etc.) or
more elaborate computations. Gene regulatory networks can range from
a single controlled gene to hundreds of genes interlinked with transcrip-
tion factors forming a complex decision making circuit. Different classes
of transcription factors exist, for example the binding of some transcrip-
tion factors to operator sites is modulated by small molecules, the classical
example being the binding of allolactose (a disaccharide very similar to
lactose) to the lac repressor or cAMP to the catabolite activator protein
(CAP). Alternatively a transcription factor may be expressed by one gene
and either directly modulate a second gene (which could be its self), or

http://string.embl.de/

84 CHAPTER 3. CELLULAR NETWORKS

via other transcription factors integrate multiple signals onto another gene.
Additionally, some transcription factors only become active when phos-
phorylated or unphosphorylated by protein kinases and phosphatases. Like
protein signaling and control networks, gene regulatory networks can be
elaborate, structurally and computationally.

—l L—’ Gene Activation

__|_ E’ Gene Repression

=211 E’ Multiple Control

—l_ﬂ) Gene Cascade
! F Auto-Regulation

Regulation by Small

®—i
l_l.” Molecule

@rl Regulation by
J Phosphorylation

Figure 3.9 Simple gene regulatory patterns.

Significant advances have been made in developing high-throughput meth-
ods that can be used to determine protein-gene networks. Of particular in-
terest are ChIP-chip [90, 2] and the more recently developed ChIP-seq [69]
screening method — Chromatin immunoprecipitation microarray/Sequen-
cing. ChIP works by treating cells with formaldehyde which crosslinks
the DNA to the transcription binding protein if it is bound to the DNA.
The cells are then lysed and the DNA fragmented into small 1 kB or less
fragments. A specific antibody is then used to bind to the DNA-binding
protein of interest and precipitate the protein and associated DNA frag-

3.6. GENOME SIZES 85

ment. The precipitated DNA pieces are released by reversing the crosslink-
ing. In ChIP-chip, the released DNA pieces are hybridized to a microarray
that enables the bound protein to be located on the Genome. A more re-
cent version that is gaining popularity is ChIP-seq. In this procedure the
microarray stage is abandoned and instead the released DNA pieces are
sequenced. Once sequenced, the location on the Genome can be deter-
mined. These methods have been successfully used to determine the gene-
protein network of a number of organisms, with yeast being the first [61].
Alternatively other approaches have focused on determining gene-protein
networks from literature mining and careful curation or even prediction of
putative binding sites.

In general, gene regulatory networks are the slowest responding networks
in a cell and work from minutes to hours depending on the organism, with
bacterial gene regulatory networks tending to operate more quickly.

The most extensive gene regulatory network database is RegulonDB [49,
32] which represents the gene regulatory network of E. coli. In depth re-
views covering the structure of regulatory networks can be found in the
works of Alon [99] and Seshasayee [98].

Although the description of the three main network types may give the
impression that they act independently of each other ,this is most definitely
not the case. In general, the different networks will often act together. For
example, Figure 3.11 shows a small example taken from Caulobacter [16]
showing a mixed gene regulatory and protein network.

3.6 Genome Sizes

How big are cellular networks? To answer this question we can look at
whole genomes. The sizes of genomes vary considerable from the mi-
nuscule 159,662 bases of the symbiotic bacterium called Carsonella rud-
dii, which lives off sap-feeding insects, to the Whisk fern comprised of
2.5 x 10! bases. Some of this size difference is related to the complex-
ity of the organism, simpler organisms requiring fewer genes. However
the correlation, although positive, is not entirely linear. For example E.
Coli has roughly 4,300 genes on a genome of size 4.6 Mb, while humans

86 CHAPTER 3. CELLULAR NETWORKS

[) [)
®» (0 Cross-link cells with
e (@ formaldehyde
Isolate Nuclear
DNA
-
_ DAVOGDH DMUMD
DADFDH YD
\mrw OTOIUO Sonicate DNA
- -
OGO DYDY, DADIDH YD
Add specific
antibody
DAVDGDH DGO
DARGDH DYDY -
/k\ Immunoprecipitate
DV OIOH OGO
/)$\ /i\ the complex
R YA A YA
DAVDIDH YD

DARIDYBIDHN DYDGTDH YD Reverse cross-linking,

e WIOGUIUFU and sequence fragments (seq)

- - - or apply to microarray
DADIRIRIDD. - =

DHCYDYOIMIO.
chip seq = Transcription Factor
A Specific Antibody
Figure 3.10 ChIP-chip and ChIP-seq methods for determining transcrip-
tional binding sites. Adapted from [69].

3.6. GENOME SIZES 87

mm— gene expression ?IVK {\A d(vK; |
mmmm transcription, DNA-binding Y S

= 1.
msss phosphotransfer events PleC + Pi i f‘DIVJ"P
methylation | <
* methylation site PleC jh“ V{‘\A DivJ

DivK~P
P-cell division —}l

S
CckA-HK~P CckA-HK

I dﬂaA‘ DnaA ==

**

CckA-RD CckA-RD~P

| |r>gcrA IfvbGt:rA
=k=1 0 ChpT~P ChpT
CtrA
I' M L) deR CpdR~P

C"A'*P—) proteolysis <=

(ClpX)
\
‘ M — clpP CipP
-) CcrM origin of replication
! ! ! L. [Zj i !r» RedA
Factors in bold are essential in Caulobacter ==
* = DivL is involved in CtrA phosphorylation f— TacA/SpmX pathway s

but the mechanism is still unknown.

p—3 Chemotaxis

k- PoOlar morphogenesis

Figure 3.11 Example of a mixed network involving gene regulatory and
protein phosphorylation networks in Caulobacter. Blunt ends to regulatory
arcs indicate inhibition while arrow ends indicate activation. Image from
BioMed Central [16].

have roughly 25,000 genes on a genome of about 3000 Mb. The E. Coli
genome is quite dense with roughly 88% of the genome coding for pro-
teins [104] with the remainder being made up of RNA coding, promoter
sequences and so on. The human genome on the other hand is very sparse
with only about 2% of the genome actually coding for protein. There is
ongoing speculation as to why the human genome is so sparse and what
the role of the other 98% might play. Some evidence suggests an extensive
RNA based regulatory network [71] that is coded in at least some of the
non-coding sequences (the so-called junk DNA).

Figure 3.12 shows an example of a small genome from Mycoplasma gen-
italium. This organism is a small parasitic bacteria that lives in primate
genital and respiratory tracts and is the smallest known free-living bacte-
ria. The genome of this organism has 521 genes in total, 482 or these code

88 CHAPTER 3. CELLULAR NETWORKS

for protein with the remaining 39 reading frames coding for tRNA and
rRNA.

w e s s w9 we _we o om on oe oo vy s 0w o ve _ow o
[] eo— — s— e B—______ 1 O o e s | | | ey e) e [— =g
W e w e s e g @ w1 I W s e T w
e Bl w2 L B D,) ¢ ey s el £
W e e e i e w
R e e Bt
w2 i I s W e
o = o i om = W o e ms e gevow o owmrimom o
08 W P 0, L i — 2 (L5 e
s e w m——wm _w 0w w W 7 me_ms g e v
o m— —— . e el s e S— —
TR ETR i o sie w o p wme m mwwome W G m)
— e e o B 1 1 A B figEer
HgPar_tspar o o ARy e 120 141 I TR TR [ERENEEY]
it oo 7 o W P By w0 0 i1 Tl 1 it w mi e w s o
| e— S
W w4 01 e e [W mapma @
e e—— —— s s — | s]
T o o T R TR TR T TR o 2
% : dm 2 L =3 = mrm
G mi om @ e wemml @ mom _ mi zPhads g otz o R
e 225 it e T 2 Ropy s o 8 i
2 P
e am g ew g ws o a0 B _m ot w g o owo-
e _om o m ww m g m s e em am o om 2w
.« o e, i i i ot £
wi ome e g ms moE e, ppe o w o ET I
En i e m ow s T wr i w
Iz S— e K e e— e —
£ w0 g te vo o oas gm_ o dw am o = = w 2
o e 1<) <R < o o [e || 1 e afr <~
ETIT] = @ wt e m ms o n = o e)
o S it RSt — — i e i) [—— c— " = S —
s et w w oa s W w _w G s ow R
i Lo Do, e— 1 o) e, s [t R]
e _ow _mmom g s m s om s om om im _os smin _om FERy T
e R e B T i it AR AR PRI, : 25
o s s £ e e __w m _w o wr ow m
A Co--——— <] T)T R —
w0 i wp ama we dn _ar aw am an_ e i _an s i a = =
e e e o s S | e R e o s Do | s e 27202
@ o e s mneien s = o & m w0 ow w wr
e e =
MTMB0 250 251 452 453 455 454 456 457 283 45 255458 g5y A58
E D, N — S e
s = i e
e [r—— = ing ke
o B —— IR W v, [T — . L = L
- ——itkb oo .‘ =
B Dt
B e

Figure 3.12 Small genome with 521 genes from Mycoplasma genitalium.
Image taken from BioCyc.

The 482 genes that encode proteins in Mycoplasma genitalium include a
wide variety of functions (Figure 3.13) that cover areas such as energy
metabolism, replication and the cell envelope. Even for such a small or-
ganism there are still eight genes of unknown function.

Eukaryotic genes, especially Human, are also fragmented into segments
called exons (coding) and introns (non-coding). This segmentation allows
different forms of protein to be derived from the same gene by splicing
together different exons. Although the apparent number of genes is of the
order of 25,000, probably increases this number significantly [15, 108].
Finally, many proteins, particularly those involved in signalling pathways
also have alternative forms due to covalent modification such as phospho-
rylation or methylation. This again increases the actual number of states.
In others words the number of genes in a genome gives a lower limit to the
size of a cellular network, particularly in eukaryotic organisms. The size

3.7. E.cOLI 89

170
150 | .
3
5
2100 96 .
o
i
Na)
£
=
S 32 2
28 29
D) 20 17 q 14
6
ol N FFEA) m N |

T T T T T T T T T T T T T T

01 23 456 7 8 91011121314
Function

Figure 3.13 1: cell Envelope; 2: Regulatory; 3: Unknown; 4: Central
Metabolism; 5: Cofactor Biosynthesis; 6: Purine/Pyrumdine metabolism;
7: Transcription; 8: Transport; 9: Replication/Repair; 10: Lipid
Metabolism; 11: Translation: 12: Cellular Processes; 13: Energy Pro-
duction.

of a given genome is therefore a poor indicator organism complexity. To
give a better idea of the size and complexity of a small genome, let’s look
more closely at a specific one, E. coli.

3.7 E.coli

The bacterium E. coli is probably one the best understood organisms so is
worth considering some of its features in detail. Much of the information
provided here comes from the EcoCyc and RegulonDB online databases
and their respective publications [52, 32].

90 CHAPTER 3. CELLULAR NETWORKS

Table 3.2 A comparison of genome sizes (base pairs) and estimated num-
ber of genes. Data from Taft and Mattick [104].

Organism Genome Size Est. Number of Genes
E. coli 4,639,221 4316
Bacillus subtilis 4,214,810 4,100
Saccharomyces cerevisiae 12,100,000 6,000
Caenorhabditis elegans 97,000,000 19,049
Arabidopsis thaliana 115,409,949 25,000
Drosophila melanogaster 120,000,000 13,600
Mus musculus 2,500,000,000 37,000
Homo sapiens 3,000,000,000 30,000

E. coli is approximately a cylindrical body, with a length of about 2pum and
diameter of about 0.8 um. These dimensions offer a convenient translation
between concentration and number of molecules in E. coli. Thus 1 nM
concentration roughly translates to one molecule per E. coli cell (See ex-
ercises at end of chapter). For example, ATP is present at a concentration
of approximately 2 mM, this means there are roughly 2,000,000 molecules
of ATP in a single E. coli cell.

The E. coli genome is composed of 4,639,221 base pairs (490um in di-
ameter) encoding at least 4,472 genes. Of this number, 4,316 code for
proteins, with the remainder coding for various RNA products such as tR-
NAs and rRNAs. The genes in E. coli, like other prokaryotes, do not have
segmented genes (genes made of introns and exons); that is, a gene in E.
coli is a contiguous sequence of DNA translated into the final protein with-
out editing. In addition there is very little non-coding DNA in E. coli with
almost 88% of the genome coding for proteins.

Almost one quarter of all proteins produced by gene expression in E. coli
form multimers, proteins composed of multiple subunits. Many of these
multimers are homomultimers, meaning they are made up of the same sub-
units. Some of these proteins can also be covalently modified by phospho-
rylation, methylation or other means. There are estimated to be at least 171
transcription factors, that directly control gene expression. This number

3.7. E.coLI 91

provides insight into the size of the gene regulatory network. The EcoCyc
database reports at least 48 small molecules and ions that regulate these
transcription factors.

@8 L R
ficsl /’0 ,sf?:‘..‘

Figure 3.14 Artists impression (With permission Goodsell) of a cross-
section through E. Coli illustrating the high density of proteins and other
molecules in the the cytoplasm.

Of the 4,316 genes in E. coli, 3,384 (76%) have been assigned a biochem-
ical function. There are at least 991 genes involved directly in metabolism
with a further 355 genes involved in transport. Other gene functions in-
clude DNA replication, recombination and repair, protein folding, tran-
scription, translation and regulatory proteins. An inventory of small mol-
ecules has not been thoroughly made but EcoCyc records at least 1352
unique small organic molecules but it is likely incomplete.

These statistics suggest large numbers of interactions among many thou-

92 CHAPTER 3. CELLULAR NETWORKS

sands of cellular components forming extensive networks.

Given the size of a single E. Coli cell, the concentration of protein in the
cytoplasm and the average diameter of a protein (5 nm), it is estimated
that the average spacing (center to center) between proteins is about 7 nm.
This suggests that the cytoplasm is quite dense. David Goodsell (http://
mgl.scripps.edu/people/goodsell) is well known for his evocative
illustrations of subcellular spaces. Figure 3.14 illustrates his rendition of a
cross-section through E. Coli.

Property Dimensions

Length 2to3 um

Diameter ~ lum

Volume I1x10715L

Optimal generation time 20 to 30 mins
Translation rate 40 amino acids per sec
Transcription rate 70 nucleotides per sec
Number of ribosomes per cell 18,000

Average protein diameter 5 nm

Average concentration of protein 5-8 mM

Average number of proteins 3,600,000

Table 3.3 Basic Information on E. coli

There are two useful sites for obtaining basic operating information on
E. Coli. The first site is the E. Coli. statistics site at Project (http://
gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi). The oth-
er is a more generic and community based web site called BIONUM-
BRS (The Database of Useful Biological Numbers). Publications from
the project also supply many useful statistics on E. Coli [52, 53].

The number of molecules in a typical E. coli varies with the molecule
type. For example there are approximately 2,000,000 Na ions while only
300,000 tryptophan molecules. The larger the molecule the fewer their
number, Table 3.4. For example transcription factors are only present in
numbers ranging from 10s to 100s, whereas ions are present in the mil-
lions.

http://mgl.scripps.edu/people/goodsell
http://mgl.scripps.edu/people/goodsell
http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi

3.7. E.cOLI

93

Molecule

Estimated Number

Ions

Millions

Small Molecules
Metabolic Enzymes

10,000 - 100,000
1000 - 10,000s

Signaling Molecules 100 - 1000s
Transcription factors 10s to 100s
DNA 1-10s

Table 3.4 Orders of magnitude for various molecule types.

A significant study by Bennett et al. [S] measured over 100 metabolites lev-
els in the main metabolic pathways of glucose-fed, exponentially growing
E. coli. The average concentration was found to be 0.22 mM. We can com-
pare this with the average K, (concentration of substrate that gives half
maximal activity) of approximately 0.1 mM as reported by the database.
This suggests that on average enzymes operate above their half maximal
activity. However, a more detailed analysis revealed considerable variabil-
ity among different metabolite types. For example, cofactors such as ATP
and NAD™ were at concentrations significantly above their K,,s. In con-
trast, substrate-enzyme pairs where the concentration was below the K,
were dominated by enzymes catalyzing nucleotide, nucleoside, nucleobase
and amino acid degradation reactions. On the other hand, the glycolytic
pathway, tricarboxylic acid cycle, and the pentose-phosphate pathways all
showed substrate concentration that were similar to their K, values.

We can also consider how fast processes occur in E. coli. As suggested
earlier in the chapter, metabolic responses are the fastest followed by pro-
tein signaling networks and gene regulatory networks. Table 3.7 lists some
estimated for various biological processes.

The number of molecules and the rate of various processes gives some idea
of the magnitude of systems we are dealing with. However, the economy
of a typical cell, how ATP is distributed to different processes, and how
supply and demand are maintained is largely not understood since many
of these processes are difficult to measure. Moreover, there is no economic

94 CHAPTER 3. CELLULAR NETWORKS

Tons Estimated Numbers
Na 3,000,000

Ca 2,300,000

Fe 7,000,000

Small Molecules Estimated Numbers
Alanine 350,000

Pyruvate 370,000

ATP 2,000,000

ADP 70,000

NADP 240,000

Table 3.5 Small molecules estimates in E. coli.

theory that describes the life of a cell.

3.8 Network Motifs

At first sight the complex biochemical maps we see appear to have little
order. However upon closer examination, patterns emerge. One way to
discern these patterns is to compare real biochemical network with random
networks and to look for a given pattern in each. For example, let’s say
we identify a pattern of regulation which we label p;. We look for the
occurrence of pp in both the real biochemical network and the randomly
generated network. If we find that the pattern is statistically enriched in the
real biochemical network compared to the randomly generated one, then
we say we have found a network motif.

A motif is a subgraph within a network that occurs more often than one
would expect by random chance alone. Such subgraphs can be simple
triangles, squares etc. It is assumed that such motifs occur more fre-
quently because they confer some functional advantage; their identifica-
tion is therefore considered of some importance. Locating motifs in a large
network entails a three stage process:

3.8. NETWORK MOTIFS

95

Signaling Proteins

Estimated Numbers

Lacl 10 to 50
CheA kinase 4,500
CheB 240
CheY 8,200
Chemoreceptors 15,000
Metabolic Enzymes Estimated Numbers
Phosphofructokinase 1,550
Pyruvate Kinase 11,000
Enolase 55,800
Phosphoglycerate kinase 124,000
Malate Dehydrogenase 3,390
Citrate Synthase 1,360
Aconitase 1630

Table 3.6 Estimated numbers for larger molecules in E. coli.

e Estimating the frequency of each isomorphic subgraph in the target

network.

e Generating a suitable random graph to test the significance of the

frequency data.

e Compare the target network with the random graph.

The critical stage is generating a suitable random model for comparison.
The approach is to generate a random network which has a degree dis-
tribution that is the same as the degree distribution (See end of chapter
for glossary) of the real target network [74, 73, 72]. One way to accom-
plished this is by starting with the target network itself and randomizing
edges in such as way that the original degree distribution is preserved. This
is carried out multiple times in order to generate a population of random
networks. Once the random and target networks are ready, additional al-
gorithms are invoked to count the number of given motifs. The frequency

96 CHAPTER 3. CELLULAR NETWORKS

Process Rate

Cell Division Time 50 minutes

Rate of Replication 2000 bp/s

Protein Synthesis 1000 proteins/s

Lipid Synthesis 20,000 lipids/s

Ribosome Rates 25 amino acids per sec per ribosome

Number of ATP to make one cell 55 billion ATPs

Table 3.7 E. coli grown on minimal media plus Glucose. Data from
Phillips et al (2010) and E. coli stats reference: http://ccdb.wishartlab.com.

distribution of the motif in the random networks is then compared to the
frequency distribution in the target network. A simple significance test can
be carried out using the z-score. The z-score is computed by subtracting
the number of a given motif in the target network from the mean num-
ber of the same motif in the randomized networks. This difference is then
normalized by dividing by the standard deviation of the motif count in the
random population. If the z-score is greater than zero then it means that
the observed number of motifs is greater than the mean, while a negative
z-score indicates that the observed number of motifs is below the mean. A
z-score of two indicates that the observed value is two standard deviations
above the mean which can also be roughly interpreted as the 95% confi-
dence level, That is if a z-score is two or above then we can say that the
number of motifs is significantly different from a random network.

n_nr
z =

Or

The definition of a motif, while useful, has important restrictions. For ex-
ample, consider a large electronic circuit containing transistors, resistors
and capacitors. A motif search in such a circuit my find an overabundance
of amplifier like motifs compared to a completely random circuit. How-
ever, such an analysis will not find specialist circuits such as a resonance
filter, which may only occur once in the circuit. The motifs that are located
using this approach therefore need to be fairly common in the network.

3.8. NETWORK MOTIFS 97

The operational definition of motifs therefore excludes motifs which may
only appear once in a network but whose role is critical to the function of
the network [100].

Coherent FFL
Py Py Py Py
P2 P2 P2 P>
P P P
c1 3 c2 3 c3' 3 cs 3
Incoherent FFL
P2 P2 P2 Py
P P P P3
1 3 2 i3 > 14

Figure 3.15 Full complement of feedforward motifs, classified into co-
herent and incoherent types.

Figure 3.16 shows the relative abundance of the different kinds of feed-
forward motifs found in E. coli and Yeast. This data indicates that two
types predominate in both organisms, Coherent Type 1 (C1) and Incoher-
ent Type 1 (I1). Within each group four combinations of regulation can be
discerned. Figure 3.16 shows the relative abundance of the different kinds
of feedforward motifs found in E. coli and Yeast. This data indicates that
two types predominate in both organisms, Coherent Type 1 (C1) and Inco-
herent Type 1 (I1). What is particularly interesting is that these two types
have distinct behavioral properties.

98 CHAPTER 3. CELLULAR NETWORKS

0.7 +
o 067 m E. coli
e
& 0.5 - Yeast
2
3 04 4
<
o 03 -4
2
® 02 -
&
0.1 - I
0 - . I | - - -
c1 2 c3 ca 11 12 13 14
FFL Type

Figure 3.16 Relative abundance of different FFL types in Yeast and E.
coli. Labels on the x-axis refer to the particular FFL motifs seen in Figure
3.15. Data taken from [66]

Properties of the Coherent Type | Motif

The best way to understand the properties of the coherent type I feed-
forward network is to build a computer model and run a simulation. Fig-
ure 3.17 illustrates a possible genetic feedforward coherent type I network.

I_‘ig1_‘iﬁ2

I P3—

Figure 3.17 Example of a feedforward coherent type I genetic network.

3.8. NETWORK MOTIFS 99

Figure 3.18 illustrates one of the key properties of the coherent type I feed-
forward network.

1
Py
S 0.8 - Input Pulse 1
g / Py
® 0.6 l
s
c
g 04 Ps
c
S 02
’ / Output Signal
0 T T T
0 10 20 30 40
1
0.8 - Input Pulse .
.5 \ . Output Signal
T 0.6 -
c
S 04 -
e}
v}
0.2 - / \
0
0 10 20 30 40
Time

Figure 3.18 Simulation of a coherent Type I feedforward network. The
top panel shows the effect of a narrow pulse in the concentration of P;.
The output signal, P3, shows no response. In the lower panel, the input
signal, Pq, is wider, this gives time for the feedforward loop to activate as
shown by the large change in output signal, P3. The coherent type I FFL
will only ‘fire’ if the input pulse is of sufficient width. This means that the
network can act as a noise filter. See Jarnac script 3.1

The output signal, P3 is controlled by from P, and P;. If a pulse signal
is applied to P, the signal travels two routes to get to P3. If the pulse is
too short, P> does not have sufficient time to increase in order to reach the
threshold level at P3, as a result, short pulses do not result in P3 turning on.

100 CHAPTER 3. CELLULAR NETWORKS

This effect is shown in the upper panel of Figure 3.18. In sharp contrast,
if the Py pulse width is wide enough, P; has sufficient time to increase so
that is reaches the threshold level and activates P3. The network therefore
acts as a transient signal filter. Only signals of sufficient duration will result
in activation.

Properties of the Incoherent Type | Motif

The incoherent type I feedforward network (Figure 3.19) has a completely
different response compared to the coherent type I network.

I/ E’FT’l—; FT’Z

\ P3—

Figure 3.19 Example of a feedforward incoherent type I genetic network.
Note that the regulation on P3 is antagonistic compared to the coherent
type I network.

The incoherent type I network has a number of interesting behaviors, in-
cluding pulse generator, concentration band detector and frequency band
pass filter. The pulse generator simulation is shown in Figure 3.20 where
an input step function is applied to the input, P and the effect on P3 ob-
served. In this case, P3 rises rapidly then falls off in a pulse like manner
even though the input signal remains on. This is due to the delay in the
inhibition route, initially the inhibition is weak and the output raises, but
eventually P, increases and begins to repress the production of P3. The
second type of behavior that the network can display is to act as a con-
centration band detector. The simulation shown in Figure 3.21 shows the
network turning on in a specific range of input signal. The position of the

3.8. NETWORK MOTIFS 101

1.2

Output Pulse
0.8 - ~

0.6 -

0.4 - N

0.2 n \
Input Step

0 T T T

0 10 20 30 40 50

Concentration

Time

Figure 3.20 Simulation of the pulse generation characteristics of a in-
coherent Type I feedforward network. The x-axis shows the change in the
input signal over time. At 10 time units, a step signal is applied, this causes
the output to rise then fall in a pulse like manner. The width of the pulse
can be adjusted by changing the degree of cooperativity on P3. See Jarnac
script 3.2

peak in the response can be adjusted by changing the strength of inhibition
and the input threshold from P; to Ps.

Finally, an incoherent type I network can act as a band pass filter. That
is the network will respond more strongly if the input signals varying at
a specific range of frequencies. That is at high and low frequencies the
network will not respond but at mid range frequencies it will.

A series of synthetic incoherent type I networks have been built in E. coli
that illustrate the band pass behavior [29]. Further details on the properties
of feedforward networks can be can also be found in the book by [1].

Menagerie of Motifs

The feedforward network described in the previous section is one of many
different kinds of motifs that have been identified. It would take an entire
book to describe them all. Instead we will summarize them here, together

102 CHAPTER 3. CELLULAR NETWORKS

1.2

0.6 -
0.4 -

Output Signal

0 0.2 0.4 0.6 0.8

Concentration of Input Signal

Figure 3.21 Simulation of the concentration band detector characteristics
of a incoherent Type I feedforward network. The X-axis shows the change
in the input signal while the Y-axis shows the steady state concentration in
the output signal. The network only responds in a particular range of input
concentration. See Jarnac script 3.3.

with their basic dynamic properties.

Figures 3.22, 3.23 and 3.24 show a variety of motifs. No doubt many
more natural patterns remain to be discovered in addition to new motifs
designed by the synthetic biology community [31].

Further Reading

General

1. Bray D (2011) Wetware: A Computer in Every Living Cell. Yale
University Press. ISBN: 978-0300167849

2. Goodsell D S (2009) The machinery of life. Springer, 2nd edition.
ISBN 978-0387849249

3.8. NETWORK MOTIFS 103

3.

Phillips R, Kondev J and Theriot J (2010) Physical Biology of the
Cell. Garland Science. ISBN 978-0-8153-4163-5

Specific

1.

Alberts et al, (2002) General Principles of Cell Communication http:
//www.ncbi.nlm.nih.gov/books/NBK26813/

. Brown TA (2006) Genomes 3, Garland Science, 3rd edition. ISBN:

978-0815341383

. Gerhard M and Schomburg D (2012) Biochemical Pathways: An

Atlas of Biochemistry and Molecular Biology, Wiley, 2nd edition.
ISBN: 978-0470146842

. Hancock J (2010) Cell Signalling, Oxford University Press, 3rd edi-

tion. ISBN: 978-0199232109

. Hartl DL (2008) Genetics: Analysis Of Genes And Genomes. Jones

& Bartlett Learning, 7th edition. ISBN: 978-0763772154

. Nelson DL and Cox MM (2008) Wetware: Lehninger Principles of

Biochemistry. W. H. Freeman, 5th edition. ISBN: 978-0716771081

. Salway JG (2004) Metabolism at a Glance, Wiley-Blackwell, 3rd

edition. ISBN: 978-1405107167

Exercises

In the following exercises, use the data given in the main text, and
Tables 3.3, 3.4, 3.5, and 3.6.

1.

2.

How many E. coli cells laid end to end would fit across the full stop
at the end of this sentence? Assume a diameter of the full stop to be
0.5 mm.

Estimate the volume of an E. coli cell.

http://www.ncbi.nlm.nih.gov/books/NBK26813/
http://www.ncbi.nlm.nih.gov/books/NBK26813/

104

CHAPTER 3. CELLULAR NETWORKS

. Calculate the surface area of an E. coli cell. If a typical membrane

protein is 5 nm in diameter, estimate the number of membrane pro-
teins that can be laid out on the membrane if the center-center dis-
tance between each protein is 6 nm.

Show that a 1 nM concentration is roughly equivalent to 1 molecule
in a volume of one E. coli cell.

. Estimate the number of protein molecules a typical E. coli cell can

make per second assuming that the average protein is 360 amino
acids long. Assume that the number of proteins in a cell is 3,000,000.
How long would it take to make 3,000,000 proteins?

If it takes 1,500 ATP molecules to make an average protein, how
long would it take before all the ATP is used up? Assume the ATP
is not being replaced.

What are the visual symbols often used to represent activation and
repression in biochemical networks?

Draw a similar diagram to the glycolysis regulatory diagram (Fig-
ure 3.3) but for the lysine, threonine and methionine biosynthesis
pathway from E. coli.

Appendix

See http://sbw-app.org/jarnac/ for more details of Jarnac.

// Coherent Type I Genetic Network, noise filter
p = defn cell

end;

$G2 -> P2; Vmax2%P1~4/(Kml + P1°4);
P2 -> $w; ki1xP2;

$G3 -> P3; Vmax3*P1~4xP2~4/(Kml + P1~4%P2°4);
P3 -> $w; k1x*P3;

p.Vmax2 = 1;

http://sbw-app.org/jarnac/

3.8. NETWORK MOTIFS 105

p.Vmax3 = 1;
p.-Kml = 0.5;
p-k1 = 0.1
p.-P1 = 0;
p.-P2 = 0;
p-P3 = 0;

p.ss.eval;
println p.sv;

// Pulse width
// Set to 1 for no effect
// Set to 4 for full effect

h=1;

p.P1 = 0.3;

ml = p.sim.eval (0, 10, 100, [<p.Time>, <p.P1>, <p.P3>]);

p-P1 = 0.7; // Input stimulus

m2 = p.sim.eval (10, 10 + h, 100, [<p.Time>, <p.P1>, <p.P3>]);
p.-P1 = 0.3;

m3 = p.sim.eval (10 + h, 40, 100, [<p.Time>, <p.P1>, <p.P3>]);

m = augr (ml, m2);
m = augr (m, m3);
graph (m);

Listing 3.1 Script for Figure 3.17

// Incoherent Type I Genetic Network, Pulse gemerator
p = defn cell

$G1 -> P2; tl*alxP1/(1 + A1xP1);

P2 -> $w; gamma_ 1x%P2;

$G3 -> P3; t2%b1%P1/(1 + bl*P1 + b2%P2 + b3*P1%P2°8);
P3 -> $w; gamma_2xP3;

end;

p-P2 = 0;

106 CHAPTER 3. CELLULAR NETWORKS

.P3 =0
2l = ©
.G3 = 0;
.G1 =0

‘o ‘o 'O 'O

‘o' 'o ‘v ‘o ‘o ‘O T
o’
\]
Il

// Time course response for a step pulse

p.-P1 = 0.0;
mil = p.sim.eval (0, 10, 100, [<p.Time>, <p.P1>, <p.P3/1>]);
p-P1 = 0.4; // Input stimulus

m2 = p.sim.eval (10, 50, 200, [<p.Time>, <p.P1>, <p.P3/1>]);

m = augr (ml, m2);
graph (m);

Listing 3.2 Script for Figure 3.20

// Incoherent Steady State Response

p = defn cell
$G1 -> P2; tilxalxP1/(1 + A1*P1);
P2 -> $w; gamma_1xP2;

$G3 -> P3; t2%b1*P1/(1 + bl*P1 + b2*P2 + b3*P1%P2°8);
P3 -> $w; gamma_ 2%P3;

we

we

we o

e}
av)
[
Il
O O O O O
o
s

“e

3.8. NETWORK MOTIFS

107

‘o' ‘o ‘v ‘o o oo

.t1 =56
.al = 0.1;
52 =1
il = 4
.b2 = 0.1;
.b3 = 10;
.gamma_1 =
.gamma_2 =

0.1;
0.1;

s

// Steady state response

n
m

= 200;
= matrix (n, 2);

for i = 1 to n do

begin

m[i,1] = p.P1;
m[i,2] = p.P3;
p.ss.eval;

p.-P1 = p.P1 + 0.005;

end;

graph (m);

Listing 3.3 Script for Figure 3.21

108 CHAPTER 3. CELLULAR NETWORKS
Motif Structure Name Dynamic Properties
a)
1. Noise suppression
Negative 2. Accelerated Response
O Autoregulaton 3. High Fedelity Amplifier
4. Feedback Oscillator
b)
. 1. Bistability
Positive 2. Memory Unit
O Autoregulaton 3. Op Amp Component
0
X Relaxation Adaptable Oscillatory
O_/O Oscillator
d)
Y Double Positive Memory Unit where both
units are either on or off.
__ Feedback
e)
Y Double Negative Memory Unit where one
O ,\/O Feedback unit is off the other is on
) @
Regulated Double Memory unit that records
/ \ Positive Feedback aneventinZ
/\
O~__0O

Figure 3.22 Motifs

3.8. NETWORK MOTIFS

109

Motif Structure Name

Dynamic Properties

Y @
/ \/ Regulated Double
Negative Feedback

OO

Mempory unit where nodes
switch in opposite directions
due toanevent Z.

b) O
/Cf\

1. Master/Slave Regulator

2. Temporal Sequencer - last
gene activated is the first
gene deactivated.

O
C)O
l
O

OO
0
P

1. Neural network type
computations

2. Synchronizers

3. Filters

Figure 3.23 Motifs

110

CHAPTER 3. CELLULAR NETWORKS

Motif Structure

Name

Dynamic Properties

a)

Cascade Unit

1. Noise filter
2. NonLinear amplifier

b) O
l

Coherent
Feedforward 1. Noise rejection
O 2. Pulse shifter
) O
l 1. Pulse generator
2. Concentration detector
O Incoherent 3.Response time accerlerator
/ Feedforward
9 O
/O\ Multi-Output Pulse train generator
/ FFL

Figure 3.24 Feedforwrd Network Motifs

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.90,
www.sys-bio.org

How Systems Behave

4.1 System Behavior

Ultimately we are interested in what kinds of behavior systems can dis-
play, how that behavior is generated and with that understanding how
systems can be manipulated and controlled. As we proceed through the
book we will encounter many different kinds of behavior. At this stage
however it is worth describing the states that are fundamental to all sys-
tems. These states fall into three groups: (Thermodynamic) equilibrium,
steady state, and transients. In the literature the terms equilibrium and
steady state are often used to mean the same thing but here they will be
used to describe two very different states.

The simplest and arguably the least interesting is equilibrium, or more
precisely thermodynamic equilibrium.

111

112 CHAPTER 4. HOW SYSTEMS BEHAVE

4.2 Equilibrium

Thermodynamic equilibrium, or simply equilibrium, refers to the state of
a system when all forces are balanced. In chemistry, thermodynamic equi-
librium is when all forward and reverse rates are equal. This also means
that the concentration of chemical species are also unchanging and all net
flows are zero. Equilibrium is easily achieved in a closed system. For
example, consider the simple chemical isomerization:

k
A= B 4.1)
k>

Let the net forward rate of the reaction, v, be equal to v = k1A — k» B.
The rates of change of A and B are then given by:

dA dB
d dt

The equilibrium constant for this system is given by:

B k
Keq = eq = —1
Aeq k2

Atequilibrium dA /dt and dB/dt equal zero, thatis Ak; = Bky,orv = 0.
The analytical solution to the chemical isomerization can be derived as
follows. Given that the system is closed we know that the total mass in the
system, A + B is constant. This constant is given by the sum of the initial
concentrations of A and B which we will define as A, + B,. Note that
Ao + B, = A(t) + B(¢) is always true. We assume that the volume is
constant and set to unit volume, this allows us to state that the sum of the
concentrations is conserved. The differential equation for A is given by:

dA
— =kaB —k1A
7 2 1

Before solving this equation, let us replace B by the term A, + B, — A.
This yields:
dA

o= koAp +kaBo — koA — k1A = ka(Ap + By) — A(k1 + k2)

4.2. EQUILIBRIUM 113

The easiest way to solve this equation is to use Mathematica or Max-
ima. The Mathematica command is DSolve[A’[t] == k2 (Ao + Bo)
- A[t] (k1 + k2), A[O] == Ao, A[t], t],where A[0] == Aosets
the initial condition for the concentration of 4 to be A,. By implication,
the initial condition for B, is (Ao + By) — Ao = Bo. The result of applying
the Mathematica command yields the following solution:

(Ao + Bo)ky e~kithkaiy, o

A(t) =
@) ki + ko ki + k>

The first term in the equation is independent of time and equals the equi-
librium concentration of A. The first term is a function of the total mass
in the system (4, + B,) which means that the equilibrium solution is in-
dependent of the starting concentrations so long as the total remains the
same. That is starting conditions of 4, = 1; B, =9, A, = 6; B, = 4
will also read to the same equilibrium concentrations.

The second term is time dependent and describes the evolution of the sys-
tem when the initial concentrations of A and B are not set to the equilib-
rium concentrations. The initial concentrations are set in the term vjpigal
which is the reaction rate, v, at ¢ = 0. The second term also has an expo-
nential component which approaches zero as time goes to infinity so that at
infinite time we are left with the first term which equals the concentration
of A whendA/dt = dB/dt = 0.

At equilibrium the reaction rate can be computed by substituting the equi-
librium concentration of A and B into the reaction rate, v = k> B — k1 A.
We note that the equilibrium concentration of A is given by:

A — (Ao + Bo)kZ
e ki + k»

and for B by subtracting A,y from A, + B,. When the 4.4 and B,
relations are substituted into v, the result is:

v=~0

From this somewhat long winded analysis, it has been determined for the
closed reversible system, at infinite time, the concentrations of A and B

114 CHAPTER 4. HOW SYSTEMS BEHAVE

10

Concentration, 4 or B

Figure 4.1 Time course for equilibration of the reversible reaction in
model 4.1 where k1 = 1,k = 0.5,4, = 10,B, = 0. The ratio of
the equilibrium concentration is given by k1/k». Jarnac model: 6.2

reach some constant values and that the net rate, v is zero. Note also that
the ratio of the final concentration for A and B equals the equilibrium
constant. The system is therefore at thermodynamic equilibrium.

In biochemical models it is often assumed that when the forward and re-
verse rates for a particular reaction are very fast compared to the surround-
ing reactions that the reaction is said to be in quasi-equilibrium. That is,
although the entire system may be out of equilibrium there may be parts of
the system that can be approximated as though they were in equilibrium.
This is often done to simplify the modeling process.

Living organisms are not themselves at thermodynamic equilibrium, if
they were then they would technically be dead. Living systems are open
so that there is a continual flow of mass and energy across the system’s
boundaries.

4.3. STEADY STATE 115

4.3 Steady State

The steady state, also called the stationary state, is where the rates of
change of all species, dS/dt are zero but at the same time the net rates
are non-zero, that is v; # 0. This situation can only occur in an open
system, that is a system that can exchange matter with the surroundings.
To convert the simple reversible model described in the last section into
an open system we need only add a source reaction and a sink reaction as
shown in the following scheme:

X, 24l phk (4.2)

k>

In this case simple mass-action kinetics is assumed for all reactions. It
is also assumed that the source reaction, with rate v,, is irreversible and
originates from a boundary species, X,, that is X, is fixed. In addition it
is assumed that the sink reaction, with rate constant, k3 is also irreversible.
For the purpose of making it easier to derive the time course solution, the
reverse rate constant, ko will be assumed to equal zero and we will set
the initial conditions for 4 and B to both equal zero. The mathematical
solution for the system can again be obtained using Mathematica:

1 —e kit
A(f) = UOT
4.3)
k1 (1 - €_k3t) + k3 (e_klt - 1)
B =
(1) =1 ks (k1 — k)

As t tends to infinity A(z) tends to v,/ k1 and B(t) tends to v,/ k3. In
addition, the reaction rate through each of the three reaction steps is v,.
This can be confirmed by substituting the solutions for A and B into the
reaction rate laws. Given that v, is greater than zero and that A and B
reach constant values given sufficient time, we conclude that this system
eventually settles to a steady state rather than thermodynamic equilibrium.

116 CHAPTER 4. HOW SYSTEMS BEHAVE

Thermodynamic Equilibrium and Steady State

Thermodynamic equilibrium (or equilibrium for short) and the steady
state are distinct states of a chemical system. If we consider a system
where every part is in equilibrium then we can be sure of two things.
That the species concentrations are unchanging and most importantly
there are no net flows of mass or energy within the system or between
the system and the environment. A system that is in equilibrium must
have the following properties:

ds_O
dr
foralli:v; =0

where v; is the net reaction rate for the i™ reaction step. When a bio-
logical system is at equilibrium, we say it is dead. Thermodynamically
we can also say that entropy production is at zero and has reached its
maximum value.

The steady state has some similarities with the equilibrium state, species
concentrations are still unchanging, however there are net flows of en-
ergy and mass within the system and with the environment. Systems at
steady state must therefore be open and will necessarily continuously
dissipate any gradients between the system and the external environ-
ment. This means that one or more v; s must be non-zero

The steady state is defined when all dS; /dt are equal to zero while one
or more reaction rates are non-zero:

ds_()
dr
v; #0

Thermodynamically, we can also say that the entropy production of the
system at steady state is lower than the entropy production in the envi-
ronment. In some of the literature the terms equilibrium and steady state
are used interchangeably resulting in possible confusion. In this book,
the word equilibrium will be used to refer to a system at thermodynamic
equilibrium not at steady state.

4.3. STEADY STATE 117

n:, A
5 0.4 a
=
g B
§ 02 |
E .
8
=)
o}
@)
0 | | | | |

Figure 4.2 Time course for an open system reaching steady state in
model 4.4 where v, = 1,k1 = 2,k = 0,k3 = 3,4, = 0,B, = 0.
X, is assumed to be fixed. The Jarnac model: 6.3

The system displays a continuous flow of mass from the sink to the source.
This can only continue undisturbed so long as the source material, X,
never runs out and that the sink is continuously emptied. Figure 4.2 shows
a simulation of this system.

At steady state, the rate of mass transfer across a reaction is often called
the flux, or J.

At steady state the net reaction rate is also called the pathway flux, often
symbolized with the letter J.

We can sometimes also calculate the steady state in a different way. In the
last example we used the simplified model:

Vo k] k3
Xo > A— B —> “4.4)

118 CHAPTER 4. HOW SYSTEMS BEHAVE

The differential equations for this system were:

dA
E:Uo—kl/l
dB

— =k1A—k3B
dt 1 3

If we set the rates of change to zero:

Ozvg_klA
0=kiA—ksB

We have equations in two unknown, A and B. We can solve for 4 and B
to obtain:

Usually however we cannot solve the equations and so must revert to com-
puter simulation or using specialist software (such as Jarnac) to compute
the steady state. The script below show a Jarnac model where we ask
Jarnac to solve for the steady state using the command p.ss.eval.

p = defn model
$Xo -> A; vo;
A -> B; kixA;
B -> $X1; k3x*B;
end;

// Set up the model initial conditions

p-Xo = 1; p-X1 = 0;
p-k1 = 0.2; p.k3 = 0.3;
p.vo = 0.5;

// Evaluation the steady state
p.ss.eval;

println "Steady State values:", p.A, p.B;

4.4. TRANSIENTS 119

// Output follows:
Steady State values: 2.5 1.66667

We will talk a lot more about the steady state in Chapter 6.

4.4 Transients

The final simple behavior that a system can show is a transient. A tran-
sient is usually the change that occurs in the species concentrations as the
system moves from one state, often a steady state, to another. Equation 4.3
shows the solution to a simple system that describes the transient behavior
of species A and B. Figure 4.2 illustrates the transient from an initial con-
dition, in this case from a non-steady state condition to a steady state. A
periodic (such as an oscillation) or a chaotic system may be considered a
transient, one that is unable to settle to a fixed steady state. In the case of a
system showing periodic behavior, the transient repeats itself indefinitely
at regular intervals called the period. In a chaotic system, the transient
never repeats the exact same trajectory but will continue indefinitely.

4.5 Setting up a Model in Software

There are many software tools both commercial and free (including open
source) that one can use to build models of cellular networks. In this book
we will use Jarnac [91], a software tool written by the author. Jarnac is
a script based tool where one enters a model as a text file, the model is
then compiled, run and the results displayed. Jarnac is currently a win-
dows based application. It is quite easy to set up models using Jarnac but
it also has a fairly complete programming language built-in that allows ad-
vanced users to do some sophisticated analysis. A brief introduction on
how to use Jarnac is given in Appendix E. For those who wish to use other
tools, such as COPASI (http: //wuw.copasi.org), CellDesigner (http:
//celldesigner.org/ or even Matlab (http://www.mathworks.com,
it is easy to convert Jarnac files into standard Systems Biology Markup
Language (SBML) or Matlab scripts (See Appendix E) and then load the

http://www.copasi.org
http://celldesigner.org/
http://celldesigner.org/
http://www.mathworks.com

120 CHAPTER 4. HOW SYSTEMS BEHAVE

models into the simulation tool of choice.

4.6 Effect of Different Kinds of Perturbations

When we talk about model dynamics we mean how species levels and
reaction rates change in time as the model evolves. There are a number
of ways to elicit a dynamic response in a model, the two we will consider
here are perturbations to species and perturbations to model parameters.

Effect of Perturbing Floating Species

Let us consider a two step pathway of the following form:

vi =ki1Xo v2=ky5;
Xo > Sl > Xl

We assume that X, and X are fixed. If the initial concentration of S is
zero then we can run a simulation and allow the system to come to steady
state. This is illustrated in Figure 6.4

Once at steady state we can consider applying perturbations to see what
happens. For example, Figure 6.7 illustrates the effect of injecting 0.35
units of S; at # = 20 and watching the system evolve. The Jarnac script
used to generate this graph is shown in the chapter Appendix. In prac-
tice this could be accomplished this by injecting 0.35 units of S into the
volume where the pathway operates. What we observe is that the concen-
tration of S initially jumps by the amount 0.35, then relaxes back to its
steady state concentration before the perturbation was made (Figure 6.7).
When we apply perturbations to species concentrations and the change re-
laxes back to the original state, we call the system stable. We will return
to the topic of stability in the next section.

Figure 6.7 illustrates perturbing one of the floating molecular species by
physically adding a specific amount of the substance to the pathway. In
many cases we will find that the system will recover from such perturba-
tions as we see in Figure 6.7. We are not limited to single perturbations,

4.6. EFFECT OF DIFFERENT KINDS OF PERTURBATIONS 121

0.6
)
kS
o 04) .
2
£
§ 0.2} S'1 approaching steady state -
=
S
O | | | |

| | | | |
0 2 4 6 8 10 12 14 16 18 20
Time

Figure 4.3 S; approaching steady state. Jarnac model: 6.4

Figure 6.5 shows multiple perturbations, both positive and negative. Not
all systems show recovery like this but those that do not are called un-
stable. That is when we perturb a species concentration, instead of the
perturbation relaxing back, it begins to diverge.

Effect of Perturbing Model Parameters

In addition to perturbing floating species we can also perturb the model pa-
rameters. Such parameters include kinetic constants and boundary species.
When changing a parameter we can do it in two ways, we can make a per-
manent change or we can make a change and at some time later return the
parameter to its original value. Assuming that the steady state is stable,
a temporary change will result in the steady state changing then recover-
ing to the original state when the parameter is changed back. Figure 6.6
shows the effect of perturbing the rate constant, k1 and then restoring the
parameter to its original value at some time later.

In some applications other types of perturbations are made. For example
in studying the infusion of a drug where the concentration of the drug is a
model parameter, one might use a slow linear increase in the drug concen-

122 CHAPTER 4. HOW SYSTEMS BEHAVE

1
© 0.8 i
Yy
o
g 06| [\ |
8
s 041 T S1 Decays Back |
S 02f Perturbation in Sy .

0 | | | |

0 10 20 30 40 50

Time

Figure 4.4 Stability of a simple biochemical pathway at steady state. The
steady state concentration of the species Sp is 0.5. A perturbation is made
to S by adding an additional 0.35 units of S; at time = 20. The system
is considered stable because the perturbation relaxes back to the original
steady state. Jarnac model: 6.5

tration. Such a perturbation is called ramp. More sophisticated analyzes
might require a sinusoidal change in a parameter, an impulse, a pulse or an
exponential change. The main point to remember is that parameter changes
will usually result in changes to the steady state concentrations and fluxes.

For completeness, Figure 4.7 shows what happens when we perturb both
a parameter and a species concentration. As expected the species concen-
tration does not recover to the original steady state.

4.7 Sensitivity Analysis

Sensitivity analysis at steady state looks at how particular model variables
are influenced by model parameters. There are at least two main rea-
sons why it is interesting to examine sensitivities. The first is a practical
one. Many kinetic parameters we use in building biochemical models can

4.7. SENSITIVITY ANALYSIS 123

1
0.8} Neeati .
o egative Perturbation in Sy
c
£ 06 | |
g
= 04f i
1
8 0.2 Positive Perturbation in S .
O | | | | |
0 10 20 30 40 50 60

Time

Figure 4.5 Multiple Perturbations. The steady state concentration of the
species S; is 0.5 and a perturbation is made to S; by adding an additional
0.35 units of Sp at time = 20 and removing 0.35 units at time = 40. In
both cases the system relaxes back. Jarnac script: 6.6

have a significant degree of uncertainty about them. By determining how
much each parameter has an influence on the model’s state we can decide
whether we should improve our confidence in the particular parameter. A
parameter that has considerable influence but at the same time has signif-
icant uncertainty is a parameter that should be determined more carefully
by additional experimentation. On the other hand a parameter that has lit-
tle influence but has significant uncertainly associated with it, is relatively
unimportant. A sensitivity analysis can therefore be used to highlight pa-
rameters that need better precision.

The second reason for measuring sensitivities is to provide insight. The
degree to which a parameter can influence a variable tells us something
about how the network is responding to perturbations. Such a study can be
used to answer questions about robustness and adaptation. We will delay
further discussion of this important topic to the second half of the book
where we will describe it much more detail.

How are sensitivities represented? Traditionally there are two way, one
based on absolute sensitivities and the second based on relative sensitiv-

124 CHAPTER 4. HOW SYSTEMS BEHAVE

)
[
5]
o
.2
g
g 04 T k1 Restored to Original Value
Q
S
S 02| Perturbation in ky .
O | | | | | | |

0 10 20 30 40 50 60 70 80
Time

Figure 4.6 Effect of Perturbing Model Parameters. Jarnac script: 6.7

© 08| K |
Gy
]
§ 06 5
£
§ 04} |
g
S 02f .
O | | | | | | |

0 5 10 15 20 25 30 35 40
Time

Figure 4.7 Effect of Perturbing Model Parameters and Species Concen-
tration.

4.7. SENSITIVITY ANALYSIS 125

ities. Absolute sensitivities are simply given by the ratio of the absolute
change in the variable to the absolute change in the parameter. That is:

AV
S ="
Ap

where V' is the variable and p the parameter. This equation shows fi-
nite changes to the parameter and variable. Unfortunately because most
systems are nonlinear and therefore the value for the sensitivity will be a
function of the size of the finite change. To make the sensitivity indepen-
dent of the size of the change, the sensitivity is usually defined in terms of
infinitesimal changes:

_dav

S = —
dp

Although absolute sensitivities are simple they have one drawback, the
value can be influenced by the units used to measure the variable and pa-
rameter. Often in making experimental measurements we won’t be able
to measure the quantity using the most natural units, instead we may have
measurements in terms of fluorescence, colony counts, staining on a gel
and so on. Is is most likely that the variable and parameter units will be
quite different and each laboratory may have its own way particular units
is uses. Absolute sensitivities are therefore quite difficult to compare.

To get round the problem of units, many people will use relative sensitivi-
ties, These are simple scaled absolute sensitivities:

s_r
dp V

The sensitivity is defined in terms of infinitesimal changes for the same rea-
son cited before. The reader may also recall that elasticities are measured
in this way. Relative sensitivities are immune from the units we use to
measure quantities but also relative sensitivities correspond more closely
to how many measurements are made, often in terms of relative or fold
changes. In practice steady state relative sensitivities should be measured
by taking a measurement at the operating steady state, making a perturba-
tion (preferable a small one), waiting for the system to reach a new steady

126 CHAPTER 4. HOW SYSTEMS BEHAVE

state then measuring the system again. It is important to be aware that the
steady state sensitivities measure how a perturbation in a parameter moves
the system from one steady state to another.

4.8 Robustness and Homeostasis

Biological organisms are continually subjected to perturbations. These
perturbations can originate from external influences such as changes in
temperature, light or the availability of nutrients. Perturbations can also
arise internally due to the stochastic nature of molecular events or by
natural genetic variation. One of the most remarkable and characteristic
properties of living systems is their ability to resist such perturbations and
maintain very steady internal conditions. For example the human body
can maintain a constant core temperature of 36.8°C £0.7 even though ex-
ternal temperatures may vary widely. The ability of a biological system
to maintain a steady internal environment is called homeostasis, a phrase
introduced by Claude Bernard almost 150 years ago. Modern authors may
also refer to this behavior as robustness, although this word is used in
many other contexts.

There are a number of mechanisms that are used in biology to maintain
homeostasis. Perhaps the most common is negative feedback. This is
where the difference between the desired output and the actual output is
used to modulate the process that determines the output. For example, if
the output is lower than the desired output then the process will increase
the output. Such systems are found at multiple levels in a living organism,
including subcellular processes such as metabolism and multicellular pro-
cesses that control for example the level of glucose in the blood stream.
One way to measure the degree of robustness or homoeostasis in a system
is to use sensitivity analysis. We investigate the use of negative feedback
to maintain concentrations within a narrow range in a later chapter.

4.8. ROBUSTNESS AND HOMEOSTASIS 127

Further Reading

1. Kipp E, Herwig R, Kowald A, Wierling C and Lehrach H (2005)
Systems Biology in Practice, Wiley-VCH Verlag

2. Steuer R, Junker BH (2008) Computational Models of Metabolism:
Stability and Regulation in Metabolic Networks, Advances in Chem-
ical Physics, Volume 142, (ed S. A. Rice), John Wiley & Sons, Inc.

3. Stucki JW (1978) Stability analysis of biochemical systems—a prac-
tical guide. Prog Biophys Mol Biol. 33(2):99-187.

Exercises

1. Describe the difference between thermodynamic equilibrium and a
steady state.

2. Write out the differential equations for the system 4 < B < C
where the reactions rates are given by:

V1 =k1A—sz
%) =k3B—k4C

Find the concentrations of A, B and C when the rates of change are
zero dA/dt = 0,dB/dt = 0,dC/dt = 0. Show that this system
is at thermodynamic equilibrium when the rates of change are zero.

3. What do we mean by the phrase quasi-equilibrium?

4. Find the mathematical expression for species A and B that describes
the steady state for the network:

k k k
X, — A3 B3 4.5)

k>

Assume that X, is fixed and that all reactions are governed by simple
mass-action kinetics.

128 CHAPTER 4. HOW SYSTEMS BEHAVE

5. Explain what is meant by a stable and unstable steady state.

6. The steady state of a given pathway is stable. Explain the effect in
general terms on the steady state if:
a) A bolus of floating species is injected into the pathway
b) A permanent change to a kinetic constant.

7. Determine whether the steady state for the system 4.5 is stable or
not.

8. Why are scaled sensitivity sometime of more advantage that un-
scaled sensitivities?

9. Use a software tool of your choice to visualize the phase plot for the
following system:

94X _ 5 550 — 44y
dt

YD _ 5y 4215
dt

Appendix

See Appendix E for more details of Jarnac.

p = defn cell
A -> B; kilxA;
B -> A; k2xB;

end;
p-A = 10; p.k1 = 1;
p.B=0; p.k2 =0.5;

m = p.sim.eval (0, 6, 100);
graph (m);

Listing 4.1 Script for Figure 4.1

4.8. ROBUSTNESS AND HOMEOSTASIS

129

p = defn cell
$Xo -> S1; vo;
S1 -> S2; ki1*S1 - k2xS2;
S2 -> $X1; k3x%S2;

end;

p.-vo = 1;

p-k1 = 2; p. k2 = 0;
p-k3 = 3;

m = p.sim.eval (0, 6, 100);
graph (m);

Listing 4.2 Script for Figure 4.2

p = defn newModel
$Xo -> S1; kix*Xo;
S1 -> $X1; k2%S1;

end;

p.-k1 = 0.2;
p.-k2 = 0.4;
p-Xo = 1;
p-S1 = 0.0;

m = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]1);

graph (m);

Listing 4.3 Script for Figure 6.4

p = defn newModel
$Xo -> S1; kix*Xo;
S1 -> $X1; k2%S1;

end;
p-k1 = 0.2;
p-k2 = 0.4;

130 CHAPTER 4. HOW SYSTEMS BEHAVE

p.S1 = 0.5;

// Simulate the first part up to 20 time units
ml = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]1);

// Perturb the concentration of S1 by 0.35 units
p-S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 50, 100, [<p.time>, <p.S1>]);

// MHerge and plot the two halves of the simulation
graph (augr(mil, m2));

Listing 4.4 Script for Figure 6.7

p = defn newModel
$Xo -> S1; kix*Xo;
S1 -> $X1; k2%S1;

end;

p-k1 = 0.2;
p-k2 = 0.4;
p-Xo = 1;
p-S1 = 0.0;

// Simulate the first part up to 20 time units
ml = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

// Perturb the concentration of S1 by 0.35 units
p-S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 40, 50, [<p.time>, <p.S1>]);
// Merge the data sets

m3 = augr(ml, m2);

// Do a negative perturbation in S1

p-S1 = p.S1 - 0.35;

// Continue simulating from last end point

4.8. ROBUSTNESS AND HOMEOSTASIS

131

m4 = p.sim.eval (40, 60, 50, [<p.time>, <p.S1>]);

// Merge and plot the final two halwes of the simulation

graph (augr(m3, m4));

Listing 4.5 Script for Figure 6.5

p = defn newModel
$Xo -> S1; kixXo;
S1 -> $X1; k2%S1;

end;

p-k1 = 0.2;
p.-k2 = 0.4;
p-Xo = 1;
p.-S1 = 0.5;

// Simulate the first part up to 20 time units
ml = p.sim.eval (0, 20, 5, [<p.time>, <p.S1>]);

// Perturb the parameter ki
p-k1 = p.k1*x1.7;

// Simulate from the last point

m2 = p.sim.eval (20, 50, 40, [<p.time>, <p.S1>]1);

// Restore the parameter back to ordinal value

p-k1 = 0.2;

// Carry out final run of the simulation

m3 = p.sim.eval (50, 80, 40, [<p.time>, <p.S1>]1);

// Merge all data sets and plot
m4 = augr(augr(ml, m2), m3);
graph (m4);

Listing 4.6 Script for Figure 6.6

132 CHAPTER 4. HOW SYSTEMS BEHAVE

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.8,
www.sys-bio.org

Running Simulations

5.1 Introduction

In this chapter we will look at ways to solve the differential equations that
we generate when we build a model of a system. This may seem unneces-
sary today given that we have software applications that hide all the details
and solutions can be obtained literately at the click of a button. However
it is still useful to know that basic approach and limitations of black box
solver applications so that if problems do arise one is in a better position
to make an informed judgement on how to proceed. To begin, consider
the simplest possible model, the first-order irreversible degradation of a
molecular species, S into product P:

S—P
The differential equation for this simple reaction is given by the familiar
form: S
— =—k1S 5.1
7 1 (5.1

Our aim is to solve this equation so that we can describe how S changes
in time. There are at least two ways to do this, we can either solve the

133

134 CHAPTER 5. RUNNING SIMULATIONS

equation mathematically or use a computer to obtain a numerical solution.
Mathematically we can either solve the system using traditional meth-
ods from calculus or we can use more sophisticated methods such as the
Laplace transform, often employed by engineers.

To use the traditional method we move the dependent variables onto one
side and the independent variables onto the other, this is called the separa-
tion of variables. In the above equation one can easily do this by dividing
both sides by S to give:

ds 1
——=—k 5.2
7S 1 (5.2)
In differential calculus, the derivative of In y with respect to ¢ is
dlny dyl
dt dty

This means we can rewrite equation 5.2 in the following form:

dinS _

—k
dt !

We now integrate both sides with respect to dt, that is:

/lnSdt =—k1[dt

InS =—-kit+C

where C is the constant of integration. If we assume thatatt = 0, S = S,
then In S, = C. Substituting this result into the solution gives:

InS = —kit +1nS,

In (i) = —kqt
So

Taking anti-natural logarithms on both sides and multiplying both sides by
S, gives:

S = S,e kit (5.3)

5.2. NUMERICAL SOLUTIONS 135

For simple systems such as this, it is possible to obtain analytical solutions
but very quickly we are confronted with the fact that for 99.99% of real
problems, no mathematical solution exists. In such cases, we must carry
out numerical simulations.

10

8, |

0 | | .
0 5 10 15 20

Time, t

Figure 5.1 Expponential decay from the equation: § = S,eX1? where
So =10,k =0.2.

5.2 Numerical Solutions

In the last section we saw how it was possible to solve a differential equa-
tion mathematically. If the system of differential equation is linear there
are systematic methods for deriving a solution. Most of the problems we
encounter in biology however are non-linear and for such cases mathemat-
ical solutions rarely exist. Because of this, computer simulation is often
used instead. Since the 1960s, almost all simulations have been carried out
using digital computers. Before the advent of digital computers, analog
computer were frequently used where an analog of the system was built
using either mechanical or more commonly, electrical analogs of concen-
trations. Here we will focus on methods used on digital computers.

The general approach to obtaining a solution by computer is as follows:

136 CHAPTER 5. RUNNING SIMULATIONS

1. Construct the set of ordinary differential equations, with one differ-
ential equation for every molecular species in the model.

2. Assign values to all the various kinetic constants and boundary species.

3. Initialize all floating molecular species to their starting concentra-
tions.

4. Apply an integration algorithm to the set of differential equations.

5. If required, compute the fluxes from the computed species concen-
trations

6. Plot the results of the simulation.

Step four is obviously the key to the procedure and there exist a great vari-
ety of integration algorithms. We will describe three common approaches
to give a flavor of how they work. Other than for educational purposes
(which is significant), it is rare now for a modeler to write their own inte-
gration computer code because many libraries and applications now exist
that incorporate excellent integration methods. Here we will focus on some
of the the approaches themselves and some of the software tools that can
be used.

An integration algorithm approximates the behavior of what is, strictly
speaking, a continuous system, on a digital computer. Since digital com-
puters can only operate in discrete time, the algorithms convert the con-
tinuous system into a discrete time system. This is the reason why digi-
tal computers can only generate approximations. In practice a particular
discrete step size, &, is chosen, and solution points are generated at the
discrete points up to some upper time limit. As we will discover, the ap-
proximation generated by the simplest method is dependent on the size
of the step size and in general the smaller the step size the more accurate
the solution. However since computers can only represent numbers to a
given precision (usually 15 digits on modern computers), it is not possible
to continually reduce the step step in the hope of increasing the accuracy.
For one thing, the algorithm will soon reach the limits of the precision of
the computer and secondly, the smaller the step size the longer it will take

5.2. NUMERICAL SOLUTIONS 137

to compute the solution. There is therefore often a tradeoff made between
accuracy and computation time.

Let us first consider the simplest method, the Euler method, where the
tradeoff between accuracy and computer time can be clearly seen.

Euler Method

The Euler method is the simplest possible way solve a set of ordinary dif-
ferential equations. The idea is very simple. Consider the following dif-
ferential equation that describes the degradation rate of a species, S’

ds

T k1S
The Euler method uses the rate of change of S to predict the concentration
at some future point in time. Figure 5.2 describes the method in detail. At
time f1, the rate of change in S is computed from the differential equation
using the known concentration of S at #;. The rate of change is used to
compute the change in S over a time interval £, using the relation, & dS/dt.
The current time, #; is incremented by the time step, /& and the procedure
repeated again, this time starting at #,. The method can be summarized by
the following two equations which represent one step in an iteration that
repeats until the final time point is reached:

4 1\

_ dy(1)
yit+h)=y@t)+h TR

tht1 =1ty +h 5.4

|\ J

Figure 5.2 also highlights a problem with the Euler method. At every
iteration, there will be an error between the change in S we predict and
what the change in S should have been. This error is called the truncation
error and will accumulate at each iteration. If the step size is too large, this
error can make the method numerically unstable resulting in wild swings
in the solution.

138 CHAPTER 5. RUNNING SIMULATIONS

Figure 5.2 also suggests that the larger the step size the larger the truncation
error. This would seem to suggest that the smaller the step size the more
accurate the solution will be. This is indeed the case, up to a point. If the
step size becomes too small there is the risk that roundoff error which will
propagate at each step into the solution. In addition, if the step size is too
small it will require a large number of iterations to simulate even a small
time period. The final choice for the step size is therefore a compromise
between accuracy and effort. A theoretical analysis of error propagation
in the Euler method indicates that the error accumulated over the entire
integration period (called the global error) is proportional to the step size.
Therefore halving the step size will reduce the global error by half. This
means that to achieve even modest accuracy, small step sizes are necessary.
As a result, the method is rarely used in practice. The advantage of the
Euler method is that it is very easy to implement in computer code or even
on a spreadsheet.

S S
. Truncation Error
Slope: . p /
ds/dt e T} I
7 True Solution R
g o« AS =h.dS/dt
AT S 7 /
/"/’ ,//', h
Time Time
A) t B) t ty

Figure 5.2 Euler Method. Starting at ¢1, the slope dS/dt at t1 is computed
(Panel A). The slope is used to project forward to the next solution in
time step, A, to t, (Panel B). The new solution at f, is indicated by P.
However the solution is given by point R, located on the solution curve
at . Reducing the step size & will reduce the error between the exact
and the projected solution, but will simultaneously increase the number
of slope projections necessary to compute the solution over a given time
period.

5.2. NUMERICAL SOLUTIONS 139

The Euler method can also be used to solve systems of differential equa-
tions. In this case all the rates of change are computed first followed by
the application of the Euler equation 5.4. As in all numerical integration
methods, the computation must start with an initial condition for the state
variables at time zero. The algorithm is described using pseudo-code in
Algorithm 1.

n = Number of state variables
y; = i variable

Set timeEnd

currentTime = 0

h = stepSize

Initialize all y; at currentTime

while currentTime < timeEnd do
fori = 1tondo

dy; = fi(y)

fori = 1tondo
Yi(t +h) = yi(t) + h dy;

currentTime = currentTime + /&
end while

Algorithm 1: Euler Integration Method, £, (y) represents the ‘" differ-
ential equation from the system of ordinary differential equations.

Example 5.1

Solve the decay differential equation 5.1 using the Euler method. Assume k; =
0.2 and the concentration of S, and P are time = 0 is 10 and O respectively.
Assume a step size, h, of 0.4. Form a table of four columns, write out the solution
to two three decimal places. The 4 column should include the exact solution
(Equation 5.3) for comparison.

140 CHAPTER 5. RUNNING SIMULATIONS

Time Numerical Solution (S) dS/dt Exact Solution

0 10 2 10

0.4 9.2 1.84 9.23
0.8 8.464 1.6928 8.52
1.2 7.787 0.01 7.87

Table 5.1 Solution Table using a step size of 7 = 0.4.

Figure 5.3 shows the effect of different steps sizes on the Euler method.
Four cases are shown, in the worse case the solution is unbounded and the
computer will eventually crash with an overflow error. The second case is
where the result is bounded but the solution bears no resemblance at all to
the actual solution. The third case shows that the solution is beginning to
resemble the actual solution but irregularities appear near the beginning of
the integration. The final case shows the actual solution generated from a
specialized integrator.

Modified Euler or Heun Method

As indicated in the last section, the Euler method, though simple to imple-
ment, tends not to be used in practice because it requires small step sizes to
achieve reasonable accuracy. In addition the small step size makes the Eu-
ler method computationally slow. A simple modification however can be
made to the Euler method to significantly improve its performance. This
approach can be found under a number of headings, including the modified
Euler method, the Heun or the improved Euler method.

The modification involves improving the estimate of the slope by averag-
ing two derivatives, one at the initial point and another at the end point.
In order to calculate the derivative at the end point, the first derivative
must be used to predict the end point which is then corrected by using
the averaged slope (Figure 5.4). This method is a very simple example
of a predictor-corrector method. The method can be summarized by the

5.2. NUMERICAL SOLUTIONS 141

1 04 h = 0.55, unbounded 4 h = 0.5, bounded
T T
,l HHHxH‘ix‘ix‘n‘u“x‘\‘x
i x' x' x' x' ‘H‘H
20
t
Best solution
20 | 20 | |

Figure 5.3 Effect of different step sizes on the Euler method using a
simple linear chain of reactions where each reaction follows reversible
mass-action kinetics: Xo = S1, Sl = S2, S, = ; S3, S3 = X1 where

ko ka 6

ki1 =045, ky = 023,kz = 0.67,ks = 12,ks =23, ke = 0.3,k7 =
0.73, X, =10, X1 =0,81 = 5,5, = 15,53 = 20.

142 CHAPTER 5. RUNNING SIMULATIONS

following equations:

d
Predictor: y(t +h) = y(t) +h):i(tt) 5.5)
h (d d h
Corrector: y(t + h) = y(t) + . ();l(tt) i y(;;l—))
(5.6)
lnt1 =1In +h (5.7)

Figure 5.4 describes the Heun method graphically. A theoretical analysis
of error propagation in the Heun method shows that it is a second order
method, that is if the step size is reduced by a factor of 2, the global error
reduced by a factor of 4. However, to achieve this improvement, two eval-
uations of the derivatives is required per iteration, compared to only one
for the Euler method. Like the Euler method the Heun method is also quite
easy to implement.

Runge-Kutta

The Heun method described in the previous section is sometimes called
the RK2 method where RK2 stands for 2nd order Runge-Kutta method.
The Runge-Kutta methods are a family of methods developed around the
1900s by the German mathematicians, Runge and Kutta. In addition to the
2nd order Heun method there are also 3rd, 4th and even 5th order Runge-
Kutta methods. For hand coded numerical methods, the 4th order Runge-
Kutta algorithm (often called RK4) is probably the most popular among
modelers. The algorithm is a little more complicated in that it involves the
evaluation and weighted averaging of four slopes.

5.2. NUMERICAL SOLUTIONS 143

h i h i
t, Time B) £ t, Time

A b
Figure 5.4 Heun Method. Starting at 71, the slope A at T is computed.
The slope is used to predict the solution at point P using the Euler method.
From point P the new slope, B is computed (Panel A). Slopes 4 and B
are now averaged to form a new slope C (Panel B). The averaged slope is
used to compute the final prediction.

n = Number of state variables
y; = i variable

Set timeEnd

currentTime = 0

h = stepSize

Initialize all y; at currentTime

while currentTime < timeEnd do
fori = 1ton do

ai = fi(y)

fori = 1tondo
bi = fi(y +ha)

fori = 1ton do)
yi(t +h) = y;(t) + 5 (a; + b;)

currentTime = currentTime + /&
end while

Algorithm 2: Heun Integration Method. f;(y) is the i* ordinary dif-
ferential equation

144 CHAPTER 5. RUNNING SIMULATIONS

In terms of global error, however, RK4 is considerably better than Euler or
the Heun method and has a global error of the order of four. This means
that halving the step size will reduce the global error by a factor or 1/16.
Another way of looking at this is that the step size can be increased 16 fold
over the Euler method and still have the same global error. The method
can be summarized by the following equations which have been simplified
by removing the dependence on time:

klzhf(yn)

k1
kz=hf(yn+?)
k3=hf(yn+k—22)

k4=hf(yn+k3>

1
Y +h) =y + — (k1+2k2+2k3+k4)

Int1 =In +h

(. J

Figure 5.5 shows a comparison of the three methods, Euler, Heun and RK4
in solving the Van der Pol equations. The Van der Pol equations is a classic
problem set that is often used when comparing numerical methods. The
equations model an oscillating system, inspired originally from modeling
vacuum tubes but also later formed the basis for developments in modeling
action potentials in neurons. The Figure shows that the Heun and RK4
methods are very similar, at least for the Van der Pol equations, though this
is not always be the case. For this particular model the solution generated
by the RK4 method is very similar to the best possible solution that can be
obtained by numerical solution. Notice how bad the Euler method is.

5.2. NUMERICAL SOLUTIONS 145

n = Number of state variables
y; = i variable

timeEnd = 10

currentTime = 0

h = stepSize

Initialize all y; at currentTime

while currentTime < timeEnd do
fori = 1ton do

kii = hf(yi)

fori = 1ton do
kai = hf(yi +k1i/2)

fori = 1tondo
k3i = hf(yi + k2i/2)

fori = 1tondo
kai = hf(yi + kai)

fori = 1tondo L
yit +h) = yi(t) + ‘ (k1i + 2 kai + 2 ki + kai)

currentTime = currentTime + /&
end while

Algorithm 3: 4th Order Runge-Kutta Integration Method

Variable Step Size Methods

In the previous discussion of numerical methods for solving differential
equations, the step size, &, was assumed to be fixed. This makes imple-
mentation quite straight forward but also make the methods inefficient.
For example, if the solution is at a point where it changes very little then
the method could probably increase the step size without loosing accuracy
while at the same time achieve a considerable speedup in the time it takes

146 CHAPTER 5. RUNNING SIMULATIONS

25
= 20 -
g Euler
g 15 -
©
s 10 -
S Heun and RK4
S 5 |
5
8 50 5 10 15 20
Time
-10

Figure 5.5 Comparison of Euler, Heun and RK4 numerical methods
at integrating the Van der Pol dynamic system: dy;/dt = y, and
dys/dt = —y1 + (1 — y1y1)y2. The plots show the evolution of y;
in time. The RK4 solution is almost indistinguishable from solutions gen-
erated by much more sophisticated integrators. Step size was set to 0.35.

to generate the solution. Likewise if at a certain point in the integration the
solution starts to change rapidly, it would be prudent to lower the step size
to increase accuracy. Such strategies are implemented in the variable step
size methods.

The approach used to automatically adjust the steps size can vary from
quite simple approaches to very sophisticated methods. The simplest ap-
proach is to carry out two integration trials, one at a step size of 4 and an-
other trial using two steps size but at /2. The software now compares the
solution generated by the two trials. If the solutions are significantly differ-
ent then the step size must be reduced. If the solutions are about the same
then it might be possible to increase the step size. These tests are repeat-
edly carried out, adjusting the step size as necessary as the integration pro-
ceeds. This simple variable step size approach can be easily incorporated
into some of the simpler algorithms particularly the fourth order Runge-

5.2. NUMERICAL SOLUTIONS 147

Kutta where it is called the variable step-size Runge-Kutta. Another ap-
proach to adjusting the step size is called the Dormand-Prince method [27].
This method carries out two trials based on the fourth and fifth order
Runge-Kutta. Any difference between the two trials is used to adjust
the step size. Matlab’s ode45 implements the Dormand-Prince method.
Similar methods to Dormand-Prince include the Fehlberg http://en.
wikipedia.org/wiki/Runge-Kutta-Fehlberg_method and more re-
cently the Cash-Karp method [19].

Many of these simple adjustable step size solvers are quite effective. Some-
times they can be slow however especially for the kinds of problem we find
in biochemical models. In particular there is a class of problem called stiff
problems which generally plagues the biochemical modeling community.
Stiff models require highly specialized solvers which have been developed
in the last four decades.

Stiff Models

Many differential equations we encounter in biochemical models are so-
called stiff systems. The word stiff apparently comes from earlier studies
on spring and mass systems where the springs had large spring constants
and therefore difficult to stretch. A stiff system is often associated with
widely different time scales in a system, for example when the rate con-
stants are widely different in a biochemical model. Such systems may have
molecular species whose decay rates are very fast compared to other com-
ponents. This means that the step size has to be very small to accommodate
the fast processes even though the rest of the system could be accurately
solved using a much larger step size. The overall result is the need for
very small steps sizes and therefore significant computational cost and the
possibility of roundoff error which will tend to be amplified by the large
time constants in the fast system. The net result are solutions which bear
no resemblance to the true solution.

Most modern simulators will employ specific stiff algorithms for solv-
ing stiff differential equations. Of particular importance is the sundials
suite [23] and odepack [43]. Sundials includes a number of very useful,
well written and documented solvers. In particular the CVODE solver is

http://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
http://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method

148 CHAPTER 5. RUNNING SIMULATIONS

very well suited to finding solutions to stiff differential equations. As a re-
sult sundials is widely used in the biochemical modeling community (for
example by Jarnac and roadRunner). Before the advent of sundials, the
main workhorse for solving stiff systems was the suite of routines in ode-
pack. Of particular importance was LSODA which in the 1990s was very
popular and is still a valuable set of software (currently used in COPASI).
The original stiff differential equation solver was developed by Gear in the
1970s and is still used in Matlab in the form of odel5s.

5.3 Matlab Solvers

Although this isn’t a book about Matlab, it is worth mentioning how Mat-
lab can be used to solve differential equation. Matlab offers a range of
solvers to solve ordinary differential equations. Possibly the two most
common solvers use are the ode45 and ode15s solvers.

The ode45 solver implements a variable step size Runge-Kutta method.
The variable step size is achieved by comparing solutions using a forth
and fifth order Runge-Kutta. If the error between the two methods is too
big, then the step size is reduced, otherwise if the step size is below a
given threshold then the program will attempt to increase the step size.
This method is also called the Dormand-Prince method. The basic syntax
for ode45 is:

[t,y] = ode45(@myModel, [t0O, tend], yo, [1, p);

where

myModel is the function containing the differential equations

t0, tend is the initial and final values for the independent variable, .
yo is a vector of initial conditions

p is set of parameters for the model, this can be any size.

The empty vector in the call is where additional options particular to ode45
can be placed.

For example, to solve the set of ODEs:

5.4. OTHER SOFTWARE 149

d

% = Vo _kl)’I
dy>

—= =k —k

di 1)1 2)2

We would write the following .m file and load it into Matlab

function dy = myModel(t, y, p)
dy = zeros (2,1);

vo = p(1);
k1 = p(2);
k2 = p(3);

dy(1) = vo - k1 y(1);
dy(2) = k1 y(1) - k2 y(2);

‘We would then call the solver as follows:

p = [10, 0.5, 0.35]
y0 = [0, O]
[t, y] = ode45 (@myModel, [0, 201, yO, [I1, p)

Although many problems can be solved using ode45, for some models that
are stiff, ode45 is insufficient and will fail to give the correct solution. In
these cases ode15s is recommended. ode15s is a variable order solver and
amongst other things it uses the well know method called Gear’s method.
Like ode45, odel5s is also a variable step size method. ode45 might be
faster than ode15s on simple problems but with today’s fast computers the
difference is hardly noticeable. Therefore one might as well use ode15s
for all problems. ode15s is called in the same way as ode45.

5.4 Other Software

Although sometimes it may seem to be the case, Matlab isn’t the only
software that can be used to solved differential equations. For example

150 CHAPTER 5. RUNNING SIMULATIONS

Mathematica is an example of another commercial tool that can be used to
solve differential equations.

For those who require more control or who are unable to purchase a com-
mercial tool there are many free applications and professionally devel-
oped open source software libraries that can be used very effectively. Oc-
tave (http://www.gnu.org/software/octave/) is an open source tool
that is very similar to Matlab, in fact even the syntax is similar if not
identical. SciLab (http://www.scilab.org/) is another free Matlab
like application. If you like programming in Python then Sage (http:
//www.sagemath.org/index.html) is an excellent option. There are
therefore many alternatives and often free options to using Matlab.

For those who require much more control and higher performance than can
be achieved by the tools mentioned above then there is the Sundials C/C++
library developed by the Department of Energy. In particular within Sun-
dials there is the CVODE library that is used by many of the commercial
tools. CVODE implements an advanced Gear like algorithm using a vari-
able order and variable step size approach. It is highly suited for stiff
systems and is the preferred method for those who need to write their own
code. One final library worth mentioning is the GPL (GNU General Public
License) licensed GSL library (http://www.gnu.org/software/gsl/.
Although very comprehensive, the GPL license restricts its use to other
GPL licensed source code and therefore its ODEs solvers cannot be used
as easily as the CVODE library.

5.5 Specialized Software

Simulating biochemical networks has a long history dating back to at least
the 1940s [20]. The earliest simulations relied on building either mechan-
ical or electrical analogs of biochemical networks. It was only in the late
1950s, with the advent of digital computers and the development of spe-
cialized software tools [33] that the ability to simulate biochemical net-
works became more widely available. In the intervening years up to 1980,
a handful of other software applications were developed [17, 18, 82] to
help the small community of modelers. In more recent years, particularly

http://www.gnu.org/software/octave/
http://www.scilab.org/
(http://www.sagemath.org/index.html
(http://www.sagemath.org/index.html
http://www.gnu.org/software/gsl/

5.5. SPECIALIZED SOFTWARE 151

since the early 1990s, there has been a significant increase in interest in
modeling biochemical processes and a wide range of tools is now avail-
able to the budding systems biologist. Many tools have been developed by
practicing scientists and are therefore available for free and often as open
source.

In this book we will be using the authors’ modeling tool Jarnac [91]. The
main reason for this is that Jarnac is a script based modeling application
which makes it easy to show the model script in the text of the book. Most
tools do not allow this because either they use a visual approach to model-
ing, such as JDesigner [8] or CellDesigner [55] or use graphical user inter-
faces such as COPASI [47] or iBiosim [78]. All these tools however export
and import the standard modeling language SBML (See section 5.7). How-
ever SBML is written in XML is it is not a suitable format for displaying
in a text book.

Jarnac

Jarnac [91] is a rapid prototyping script based tool that was developed as
a successor to SCAMP [95]. It is distributed as part of the Systems Bi-
ology Workbench which makes installation a one-click affair. Jarnac was
developed in the late 1990s before the advent of portable GUI toolkits
which explains why it only runs under Windows although it runs well un-
der Wine (Windows emulator) thus permitting it to run under Linux or the
Apple Mac. Visually, Jarnac has two main windows 5.6, a console where
commands can be issued and results returned and an editor where control
scripts and models can be developed. The application also has a plotting
window which is used when graphing commands are issued.

Jarnac implements two languages, a biochemical descriptive language which
allows users to enter models as reaction schemes (similar to a SCAMP
script [95]) and a second language, the model control language which is a
full featured scripting language that can be used to manipulate and analyze
a model. The main advantage of Jarnac over other tools is that models can
be very rapidly built and modeled. From the authors own experience with
using simulation tools over the years, Jarnac probably offers the fastest
development time for model building of any tool. Models can also be

152 CHAPTER 5. RUNNING SIMULATIONS

imported or exported as SBML. Jarnac offers many analysis capabilities
including support for metabolic control analysis, structural analysis of net-
works and stochastic simulation. It has no explicit support for parameter
fitting but this is easily remedied by transferring a model directly to a tool
such as COPASI via SBW. A more detailed description of Jarnac is given
in Appendix E.

#3 Jarnac Version 3.212 Interactive Mode o | B X
File Edit Search Templates Options View Run Tools SBW Help

Fditor x|
<= 0 5 3 B R OB % B B &9 &> X Ao o B Show line rumbers €31

bistsbledjan % |untitled5322jan X |untitledd405,sn X | untitlcd7949jen X |ChapterSReverseEngineerhetwork,jan X

an

25 o i
| Edit Graph |jg] |;||E\@ | By sove chart | | Gflosdchart | xi-221;y:8.13

10

v dSESE

Legend

m = p.sin
graph (m)|

pA
pB
pC

Chapter5ReverseEngineerNetworkjar Ln: 10, Col: 21 Insert SBW Status: T3

Figure 5.6 Screen shot of Jarnac with simulation results

5.6 Stochastic Kinetics

Up to now we’ve considered how to run simulations of continuous models
that can be described using ordinary differential equations. However, as
mentioned in Chapter 2 there is a strong case to model reaction systems
using a discrete stochastic approach. The reason for this is that at low

5.6. STOCHASTIC KINETICS 153

numbers of molecules, individual reaction events can play a dominant role
in determining the evolution of the system. Since the exact time at which
a reaction will occur is only known as a probability, simulating reaction
events becomes a stochastic process. In addition, since we’re dealing with
individual reaction events, we must keep track of exact molecule numbers.
The companion book, ‘Enzyme Kinetics for Systems Biology’ [93], de-
scribes in detail the theory and algorithms behind stochastic simulations
and here we will only describe the basic algorithm and software that can
be used to simulate a stochastic system. The most common approach to
stochastic simulation is to use the Gillespie method for simulation. Con-
sider a system described by the reaction network:

V1 (%} U3
Xo —> Sl —> Sz — Xl

At each iteration in the simulation, two random choices are considered, the
first is which reaction among the three will “fire’, that is react? The second
random choice is to decide when in the future the selected reaction will
actually ‘fire’. In addition we must also decrement the number of reactants
by one and increase the number of products by one for the chosen reaction.
For example if the second reaction is chosen to react then when it reacts
one molecule of S will disappear and one molecule of S, will appear.
The method is applied repeatedly until a maximum time for simulation is
reached.

There are many variants on the method, some are faster and some are ap-
proximate. The review by Pahle [81] covers many of these variants and
is well worth consulting. There are a number of software tools that sup-
port stochastic simulation, examples include COPASI [47], Dizzy [88] and
Jarnac [91]. Manninen et al [67] has a review of some of the software
tools. Here we will show how to carry out a stochastic simulation using
Jarnac. Figure 5.1 shows a Jarnac listing that generated the plots shown in
Figure 5.7. The key line in the script is:

m = gillespie (p, 0, 30, [<p.time>, <p.S1>, <p.S2>]);.

This takes four arguments. The first argument is the model variable, in this
case, p. The second and third arguments set the time start and time end
for the simulation. The forth argument sets the columns in the matrix that

154 CHAPTER 5. RUNNING SIMULATIONS

will be returned by the Gillespie method, in this case time and the levels of
the two variables, S; and S»>. Note that the amounts for the species have
been set to integer values reflecting the fact that we are now dealing with
discrete molecules.

p = defn newModel
$Xo -> S1; kixXo;
S1 -> S2; k2x%S1;
S2 -> $X1; k3*S2;

end;
p-k1 = 0.2; p.k2 = 0.4; p.k3 = 2;
p-Xo = 50; p.S1 = 0; p.S2 = 0;

m = gillespie (p, 0, 30, [<p.time>, <p.S1>, <p.S2>1);

graph (m);
Listing 5.1 Script for Figure 6.6
st 52
40
2 \ /W A'\, Ny 1A f\ﬁ

o Viss R A" Al

g Mol |
ol . ,
L AN Y AL W

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time

Figure 5.7 Stochastic Simulation using Jarnac.

As with continuous simulations, it is possible to carry out a number sep-

5.7. MODELING STANDARDS AND DATABASES 155

arate runs where other events can be imposed in between the runs. For
example, we might want to decrease one of the rate constants by a factor
of six at a certain time point in the simulation and then carry the simula-
tion on. Listing 5.2 shows one simulation being carried out from 0 to time
30. At this point one of the rate constants is decreased six fold, then the
simulation is started up again, but this time setting the time start to the end
time of the previous simulation. Finally, both matrices from the two runs
are merged and the entire simulation plotted.

p = defn newModel
$Xo -> S1; kix*Xo;
S1 -> S2; k2x%S1;
S2 -> $X1; k3*S2;

end;
p-k1 = 0.2; p.k2 = 0.4; p.k3 = 2;
p-Xo = 50; p.S1 = 0; p.S2 = 0;

// Simulate the first part up to 20 time units

ml = gillespie (p, 0, 30, [<p.time>, <p.S1>, <p.S2>]);
p-k1 = p.k1 / 6;

m2 = gillespie (p, 30, 60, [<p.time>, <p.S1>, <p.S2>]);

graph (augr(m1,m2));

Listing 5.2 Script for Figure 6.6

5.7 Modeling Standards and Databases

The last 10 years has seen a significant increase in the number of sim-
ulation tools, all of which use different formats to store models. It was
soon realized that some form of standardization for model exchange was
necessary. As result two proposed standards emerged: CellML [40] and
SBML [48] (Systems Biol9ogy Markup Language). CellML is primar-
ily a notation for representing biochemical models in a strict mathemat-

156 CHAPTER 5. RUNNING SIMULATIONS

.81 .82

NS

0 5 10 15 20 25 30 35 40 45 50 55 60

Time

Figure 5.8 Stochastic Simulation using Jarnac showing how any event can
be superimposed between two consecutive simulations.

ical form, as a result it is in principle completely general. SBML on the
other hand uses a biologically inspired notation to represent networks from
which a mathematical model can be generated. Each has its strengths and
weaknesses, SBML has a simpler structure compared to CellML, as a re-
sult there is more software support for SBML. Most software tools at the
present time support import and export of SBML. Both standards have very
active communities with intra cellular models being primarily the domain
of SBML and physiological models for CellML. Here we will focus on
SBML.

SBML

SBML is based on XML and closely follows the way existing modeling
packages represent models. For example SBML represent biochemical
networks as a list of chemical transformations. SBML employs specific
elements to represent spatial compartments, molecular species and param-
eters. In addition to these, SBML also has provision for rules which can be
used to represent constraints, derived values and general math which for

5.7. MODELING STANDARDS AND DATABASES 157

one reason or another cannot be transformed into a chemical scheme.

SBML, like any standard, evolves with time sbml.org. Major revisions
of the standard are captured in levels, while minor modifications and clar-
ifications are captured in versions. An example of a major change within
the standard would be the use of MathML in level two of SBML, whereas
level one encoded infix strings to denote reaction rates and rules. A mi-
nor change on the other hand would for example be the introduction of
semantic annotations that can be added to SBML level two version three,
whereas this was not possible in a supported fashion in earlier versions
(see section 5.7). The latest level of SBML is level three where new func-
tionality can be supported through extension packages.

Graphical Layout

Graphical modeling applications [8] routinely enhance computational mod-
els by layout annotations. Recently the SBML community has decided on
a common standard on how to embed the layout information within SBML.
The layout extension [35] allows a model to store the size and dimension
of all model elements, along with textual annotations and reactions. Origi-
nally the intention was to embed the layout extension in a model annotation
for level 2 versions of SBML but with the upcoming level 3 the layout ex-
tension will be added to the SBML as a first-class construct. LibSBML has
been modified to provide access to all elements of the Layout Extension.
Also several reference implementations exist [8, 25].

Whereas the layout extension is concerned with representing simple ele-
ments, the Systems Biology Graphical Notation (SBGN) (http://sbgn.
org) aims to standardize the visual language of computational models un-
ambiguously. While this standard is still in development and strictly speak-
ing independent of the SBML effort, experience in other fields such as
electrical engineering has demonstrated the essential need for standardiz-
ing the visual notation for representing models in diagrammatic form.

sbml.org
http://sbgn.org
http://sbgn.org

158 CHAPTER 5. RUNNING SIMULATIONS

MIRIAM

Model Definition Languages such as SBML and CellML target the ex-
change of models. They aim to pass on the quantitative computational
models from one software tool to another. However these description for-
mats do not concern themselves with semantic annotations. Both SBML
and CellML have launched efforts to remedy this problem. Both commu-
nities agreed on the Minimum Information Requested In the Annotation
of biochemical Models (MIRIAM, [59]). These annotations aim to fur-
ther the confidence in quantitative biochemical models, making it easier
and more precise to search for particular biochemical models, enabling
researchers to identify biological phenomena captured by a biochemical
model and perhaps most importantly to facilitate model reuse and model
composition.

In order to call a model MIRIAM compliant, the model has to be encoded
in a standard format, such as SBML. Furthermore it needs to be tied to
a reference description, describing the properties and results that can be
obtained from the model. Parameters of the computational model have to
be provided so that the model can be loaded into a simulation environment
where the results can be reproduced. Other information that has to be
provided is a name for the model, the creator of the model the date and
time of the last modification as well as a statement about the terms of
distribution.

SBO - Systems Biology Ontology

In order to assign meaning to model constituents an ontology specific to
Systems Biology has been developed: The Systems Biology Ontology
(SBO, http://www.ebi.ac.uk/sbo/). The ontology consists of five
controlled vocabularies and two relationships: is-part-of and is-a. Qual-
ifying model participants, say as enzyme, macromolecule, metabolite or
small species such as an ion will make it easier to generate meaning from
the model. It will make the generation of standard visual notations such
as SBGN possible. Moreover it presents a solution on how to interpret
the model computationally, as the SBO allows tagging a model as contin-

http://www.ebi.ac.uk/sbo/

5.7. MODELING STANDARDS AND DATABASES 159

uous, discrete or logical model. One could even go a step further, making
kinetic interactions in a model obsolete, by just referencing that the rate
law is one specified by an ontology identifier (e.g.: tagging a reaction as
following Henri-Michaelis Menten enzyme kinetics and specifying the pa-
rameters). The SBO is community driven and new terms or modifications
to the existing ontology can be requested by the community.

Other Ontologies

The most recent developments in CellML and particularly the SBML com-
munities revolve around the creation of ontologies and refining the ex-
change semantics. Apart from classifying model constituents with an ap-
propriate ontology, one of the current areas of interest is describing the
dynamical behavior of a model. The “Terminology for the Description of
Dynamics“ (TEDDY, ') provides a rich ontology to describe and quan-
tify what kind of behavior a computational model is able to exhibit (e.g.:
the characteristics of a model could describe bifurcation behavior where
the functionality of a model could be described as featuring oscillations
or switch behavior). However knowing that a model exhibits interesting
behavior is not enough: more information is needed in order to recreate
that behavior. The “Minimum Information About a Simulation Experi-
ment” (MIASE, ?) project focuses in this problem. MIASE will help to
describe the simulation algorithms and the simulation tool used along with
all needed parameter settings. In order to do so it will use the Kinetic Algo-
rithm Ontology (KiSAO) that relates simulation algorithms and methods
to each other. As these ontologies are still currently under development, it
will be interesting to see how they progress and are taken up by the com-
munity.

Lastly we should mention BioPAX [64], Biological Pathway Exchange.
BioPAX is an XML based format that will act as a bridge between differ-
ent pathway databases and data. In relation to modeling software, BioPAX
may offer a means to embed rich annotation data into an SBML or CellML
model. Some of this capability is being addressed to a limited extend by

"http://www.ebi.ac.uk/compneur-srv/teddy/
Zhttp://www.ebi.ac.uk/compneur-srv/miase/

http://www.ebi.ac.uk/compneur-srv/teddy/
http://www.ebi.ac.uk/compneur-srv/miase/

160 CHAPTER 5. RUNNING SIMULATIONS

the new ontologies being developed at EBI in Cambridge, UK. However,
BioPAX, given it role to allow a common exchange of biological data be-
tween pathway database, may offer a useful complementary way to bind
data to computational models.

Human Readable Formats

SBML and CellML are examples of formats that use XML to represent
information. One advantage to using XML is that there is much software
available to assist in reading and manipulating XML based data. How-
ever, XML is not suited for human consumption but is designed strictly
to be read by computer software. In order for humans to build and read
models, human readable formats are required, often these are text based
but sometimes they are graphical. In relation to text based formats, there
has been a long tradition to using human readable formats for represent-
ing biochemical models, starting with BIOSSIM [34]. Other examples of
early human readable formats include work by Park [82] and Burns [18]
to cite but a few. In more recent years simulators such as SCAMP [95]
and METAMOD [46] also introduced human readable formats to define
models. Both software tools were developed in later years into Jarnac and
PySCeS respectively.

Other formats of interest include composable languages developed by James
McCollum at the University of Miami, Sauro and Bergmann [7] at the
University of Washington and Michael Pederson at the University of Ed-
inburgh [83]. Blinov, Faeder, Goldstein and Hlavacek developed BioNet-
Gen [12] which is a rule based format for representing systems with mul-
tiple states, Cyto-Sim, which we have mentioned previously, incorporates
an interesting human readable language for representing biochemical sys-
tems. The SBML community [122] has also developed a human readable
script called SBML-shorthand. This notation maps directly on to SBML
but is much easier to hand write compared to SBML (as are all these human
readable formats). The shorthand is also much less verbose and uses infix
to represent expressions rather than MathML. Finally we should mention
a lisp based language called little b (http://www.littleb.org/) being
developed at Harvard University. The aim of little b is to allow biologists

http://www.littleb.org/

5.7. MODELING STANDARDS AND DATABASES 161

to build models quickly and easily from shared parts.

Databases

Along with the standardization of model representation there has been an
obvious desire to create model repositories where models published in
journals can be stored and retrieved. There are at the present time, five
repositories with varying degrees of quality and usability. Probably the
most promising is the UK based searchable , BioModels Database, which
at the current time (July 2008) holds over one hundred and seventy fully
curated and working models that can be downloaded in standard SBML as
well as other formats. BioModels also has the great benefit of providing
programmatic access to its database via web services which allows any
software program to access the database seamlessly across the internet.
Models stored in the BioModels Database are curated, meaning that mod-
els will reproduce the original’s authors intention. In addition, the models
are liberally annotated so that model components can be referenced from
other database sources.

Another large database has been assembled by the CelIML community [62]
which has over three hundred models stored in CelIML format. From their
site it is possible in principle to convert the CellML into standard C code
for compilation in to a working model.

The JSim group at the University of Washington has a large database of
physiological models http://nsr.bioceng.washington.edu/Models/
stored in the mathematical language used by the JSim simulation appli-
cation. These models can only be read by JSim and currently there is
no simply way to translate these to any of the common exchange formats
though this is likely to change in the future.

Another small but very useful database is the JWS online database devel-
oped by Brett Olivier and Jacky Snoep [80] which has almost eighty fully
working models. JWS allows export in both SBML and the script format
PySCeS which can be easily translated to other formats such as Jarnac
script. JWS is arguably one of the first databases of models although phys-
iological models such as those supported by JSim have been available for
longer. Many if not all the models on JWS have also been ported to the

http://nsr.bioeng.washington.edu/Models/

162 CHAPTER 5. RUNNING SIMULATIONS

BioModels Database and vice versa.

Another database, DOQCS http://doqcs.ncbs.res.in/focuses on sig-
naling networks which contains over two hundred models. Models in DO-
QCS can only be downloaded however in Genesis format [10] which lim-
its the portability to other frameworks. Recently the DOQCS database has
been merged with the BioModels Database.

Further Reading

Unfortunately there are very few reasonably priced books on numerical
analysis. The two most popular expensive books are by Press and Burden
and are included here for reference. Both books can be bought second-
hand at reasonable prices and the content has not changed significantly
between editions. One could even argue that the code examples in the latest
edition of Press are actually worse than the previous editions. However the
main problem with the Press book is that the source code itself has very
strict licensing rules making the code almost worthless. However, the book
is excellent at explaining how the various algorithms work and for this
reason alone the book is worth it. The 2nd edition can now be purchased
at very low prices.

1. Press, Teulolsky, Vetterling and Flannery (2007) Numerical Recipes.
Cambridge University Press, 3rd Edition ISBN-10: 0521880688

2. Burden and Faires (2010) Numerical Analysis. Brooks Cole, 9th
Edition. ISBN-10: 0538733519

3. Pahle J Biochemical simulations: stochastic, approximate stochastic
and hybrid approaches. Briefings in Bioinformatics 10(1), 53-64,
2009

4. Sauro HM (2011) Enzyme Kinetics for Systems Biology, 2nd Edi-
tion. ISBN: 978-0982477335

5. Sauro, HM, and Bergmann FT (2009) Software Tools for Systems
Biology in Systems Biomedicine: Concepts and Perspectives, edited

http://doqcs.ncbs.res.in/

5.7. MODELING STANDARDS AND DATABASES 163

by Edison T. Liu, Douglas A. Lauffenburger. ISBN 978-0-12-372550-
9

For the budget conscious buyer I can highly recommend the Dover edition:

1. Dahlquist and Bjorck (2003) Numerical Methods. Dover Publica-
tions ISBN-10: 0486428079

Exercises

1. Implement the Euler method in your favorite computer language and
use the code to solve the following two problems. Set initial condi-
tions, S; = 10, S = 0. Set the rate constants to k1 = 0.1;k, =
0.25. Investigate the effect of different steps sizes, &, on the simula-
tion results.

a) dSl/dt = —k151

b) dSl/dl = —k1871; dSz/dl‘ =k1S1 — k25>

2. The following model shows oscillations in S; and S, at a step size
of i = 0.044 when using the Euler method. By using simulation,
show that these oscillations are in fact an artifact.

p = defn cell
$Xo -> S1; kixXo;
S1 -> S2; k2x%S1;
S2 -> $X1; k3*S52;

end;
p-k1 = 23.4; p.k2 = 45.6; p.k3 = 12.3
p-Xo = 10; p.S1 = 0; p.S2 = 0;

3. Find out what differential equation solver the Python SciPy Pack-
ages supports.

164 CHAPTER 5. RUNNING SIMULATIONS

4. Construct of a model of the following system using Jarnac. Let the
reaction associated with the positive feedback (k1) be governed by
the following rate law:

k151(1 + CS;I)

All other reactions are governed by first-order kinetics except the
first reaction which has a constant rate of v,. Set the constants to
the following values: v, = 8;¢ = 1.0;k; = 1;ky = 5;k3 = 1
and g = 3. Study the effect of changing v, on the dynamics of the
system.

5. Download the model BIOMDO0O00000010 from Biomodels and load
it into Jarnac. Run a simulation of the model.

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.8,
www.sys-bio.org

The Steady State

6.1 Steady State

In chapter 4 we briefly introduced the idea of the steady state. In this
chapter we will investigate the steady state in more details.

The steady state is one of the most important states to consider in a dy-
namical model. In the literature it is also sometimes referred to as the
stationary solution or state, singular points, fixed points, or even equilib-
rium. We will avoid the use of the term equilibrium because of possible
confusion with thermodynamic equilibrium.

The steady state is the primary reference point from which to consider
a model’s behavior. At steady state, the concentrations of all molecular
species are constant and there is a net flow of mass through the network.
This is in contrast to systems at thermodynamic equilibrium, where, al-
though concentrations are constant there is no net flow of mass across the
system’s boundaries.

The steady state is where the rates of change of all species, dS/dt are zero
but at the same time the net rates are non-zero, that is v; # 0. This situation
can only occur in an open system, that is a system that can exchange matter

165

166 CHAPTER 6. THE STEADY STATE

with the surroundings.

Equation 4.3 from a previous chapter described the time evolution for the
system

V1
X, > A3 B3 x,

we repeat the equations here for convenience:

_e—klt
A([) = UDT
(6.1)
k1 (1 — e_k3t) + k3 (e_klt — 1)
B(t) = Vo

k3 (k1 —k3)

As ¢t tends to infinity, A(¢) and B(¢) tends to:

Vo Vo
A(o0) = T B(o0) = ks
The reaction rate through each of the three reaction steps is v,. This can be
confirmed by substituting the solutions for A and B into the reaction rate
laws. Given that v, is greater than zero and that A and B reach constant
values given sufficient time, we conclude that this system eventually set-
tles to a steady state rather than thermodynamic equilibrium. The system
displays a continuous flow of mass from the source to the sink. This can
only continue undisturbed so long as the source material, X, never runs
out and that reaction k3 is irreversible. Figure 6.1 shows a simulation of
this system.

Graphical Procedure

We can also illustrate the steady state using a graphical procedure. Con-
sider the simple model below:

U1 U2
Xo > Sl > Xl

6.1. STEADY STATE 167

A
04} s
m
2 B
[a]
< 02 =
0 | | |
0 1 2 3 4
Time

. . k
Figure 6.1 Time course for an open system reaching steady state. X, —

k k
A3 B3 wherev, = 1,k; = 2,k3 = 3,4, = 0,B, = 0. X, is
assumed to be fixed. Jarnac model: 6.3

where X, and X are fixed boundary species and S is a species that can
change (also called floating species). For illustration purposes we will
assume some very simple kinetics for each reaction, v; and v,. Let us
assume that each reaction is governed by simple first order mass-action
kinetics,

v = k1 X,

Uy = k2S1

where k1 and k; are both first-order reaction rate constants. In Figure 6.2
both reaction rates have been plotted as a function of the floating species
concentration, Si.

Note that the reaction rate for v; is a horizontal line because it is unaf-
fected by changes in S; (no product inhibition). The second reaction, v5 is
shown as a straight line with slope, k,. Notice that the lines intersect. The
intersection marks the point when both rates, v; and v, are equal. This
point marks the steady state concentration of S;. By varying the value of
ko we can observe the effect it has on the steady state. For example, Fig-

168 CHAPTER 6. THE STEADY STATE

1.5
N
>
'g k2 =0.3
< 1l .
= —_— =
g V1 = Uy k2 02
: -
§ 05[R 2=
5 O L
S
~
0
0 1 2 3 4 5

Substrate Concentration, S

Figure 6.2 Plot of reaction rates versus concentration of S; and different
values for k; for the system X, — S — Xj. The intersection of the two
lines marks the steady state point where vy = v,. X, = 1,k; = 0.4. Note
that as k5 is decreased the steady state level of S increases.

ure 6.2 shows that as we decrease k, the concentration of Sp increases.
This should not be difficult to understand, as k, decreases, the activity of
reaction v, also decreases. This causes S to build up in response.

In this simple model it is also straightforward to determine the steady state
of 1 mathematically which amounts to finding a mathematical equation
that represents the intersection point of the two lines. We recall that the
model for this system comprises a single differential equation:

dSq
dt
At steady state, we set dS;/dt = 0, from which we can solve for the
steady state concentration of S; as:
k1 X
Sl _ 140
ko

This solution tells us that the steady state concentration of S is a function
of all the parameters in the system. We can also determine the steady state

= k1Xo— k251

(6.2)

6.1. STEADY STATE 169

rate, usually called the pathway flux and denoted by J, by inserting the
steady state value of S into one of the rate laws, for example into v5:

ki X
J =k }C"

=k1X,

2

This answer is identical to v; which is not surprising since in this model the
pathway flux is completely determined by the first step and the second step
has no influence whatsoever on the flux. This simple example illustrates a
rate limiting step in the pathway, that is one step, and one step only, that
has complete control over the pathway flux.

More Complex Model

A slightly more realistic model is the following:

where the rate law for the first step is now reversible and is given by:
V1 = k1X0 — k2S1
The remaining steps are governed by simple irreversible mass-action rate

laws, vo = k381 and vs = k4S5>. The differential equations for this
system are:

ds

d—l = (k1Xo —k2S81) —k3Si
t

dsS,

—= = k381 —k4S

T 381 —k4S2

The steady state solution for S; and S» can be obtained by setting both
differential equations to zero to yield:

k1X
Sl _ 140

ko + k3

k3k1X
S2= 3Rk1 A0

(ka + k3)ka

170 CHAPTER 6. THE STEADY STATE

The steady state flux, J, can be determined by inserting one of the solu-
tions into the appropriate rate law, the easiest is to insert the steady state
level of S5 into v3 to yield:

ka4 ks

Once the first step is reversible we see that the steady state flux is a function
of all the parameters except k4 indicating that the first step is no longer the
rate limiting step. The equation shows us that the ability to influence the
flux is shared between the first and second steps. There is no rate limiting
step in this pathway. Note that if we set k, = 0 then the solution reverts to
the earlier simpler model.

We can also make all three steps reversible (k¢ S; — k;S;+1), so that the
solution is given by:
Xok1(ka + ks) + X1kake
kaks + ka(ka + ks)
Xike(ka + k3) + Xokiks
ksks + ko (ks + ks)

S1

S>

The last example illustrates the increase in complexity of deriving a math-
ematical solution after only a modest increase in model size. In addition,
once more complex rate laws as used, such as Hill equations or Michaelis-
Menten type rate laws, the solutions become exceedingly difficult to de-
rive. As a result steady states tend to be computed numerically rather than
analytically.

6.2 Computing the Steady State

In those (many) cases were we cannot derive an analytical solution for
the steady state we must revert to numerical methods. There are at least
two methods that can be used here. The simplest approach is to run a
time course simulation for a sufficiently long time so that the time course

6.2. COMPUTING THE STEADY STATE 171

trajectories eventually reach the steady state. This method works so long as
the steady state is stable, it cannot be used to locate unstable steady states
because such trajectories diverge. In addition, the method can sometimes
be very slow to converge depending on the kinetics of the model. As a
result, many simulation packages will provide an alternative method for
computing the steady state where the model differential equations are set
to zero and the resulting equations solved for the concentrations. This
type of problem is quite common in many fields and is often represented
mathematically as the quest to find solutions to equations of the following
form:

flx.p)=0 (6.3)

where x is the unknown and p one or more parameters in the equations.
All numerical methods for computing solutions to equation 6.3 start with
an initial estimate for the solution, say x,. The methods are then ap-
plied iteratively until the estimate converges to the solution. One of the
most well known methods for solving equation 6.3 is called the Newton-
Raphson method. It can be easily explained using a geometric argument,
Figure 6.3. Suppose x; is the initial guess for the solution to equation 6.3.
The method begins by estimating the slope of equation 6.3 at the value x,
that is d f/dx. A line is then drawn from the point (x1, f(x1)), with slope
d f/dx until it intersects the x axis. The intersection, x», becomes the next
guess for the method. This procedure is repeated until x; is sufficiently
close to the solution. For brevity the parameter, p, is omitted from the fol-
lowing equations. From the geometry shown in Figure 6.3 one can write
down the slope of the line, df/dx; as:

A S

8x1 X1 — X1

This can be generalized to:

of _ f(x)

dxk Xk — Xx+1

or by rearrangement:

172 CHAPTER 6. THE STEADY STATE

y=f(x)

Y Starting Point —— ¢

Solution :
df/dz |

T3 T2 T1

X

Figure 6.3 The geometry of Newton-Raphson’s method

S (xk)

Xk+1 = Xk — m (6.4)

In this form (6.4) we see the iterative nature of the algorithm.

Before the advent of electronic calculators that had a specific square root
button, calculator users would exploit the Newton method to estimate square
roots. For example, if the square root of a number, a is equal to x, that is
J/a = x, then it is true that:

x“—a=20

This equation looks like an equation of the form 6.3. We can therefore

6.2. COMPUTING THE STEADY STATE 173

apply the Newton formula (equation 6.4) to this equation to obtain

1 a
Ner1 =5 (Xt o (6.5)

Table 6.1 shows a sample calculation using this equation to compute the
square root of 25. Note that only a few iterations are required to reach
convergence.

Iteration Estimate

0 15

1 8.33333

2 5.666

3 5.0392

4 5.0001525
5 5.0

Table 6.1 Newton method used to compute the square root of 25, using
equation 6.5 with a starting value of 15.

One importance point to bear in mind, the Newton-Raphson method is not
guaranteed to converge to the solution, this depends heavily on the start
point and the nature of the system being solved. In order to prevent the
method from continuing without end in the case when convergence fails if
is often useful to halt the method after a maximum of iterations, say one
hundred iterations. In a case like this, a new initial start is given and the
method tried again. In biochemical models we an always run a time course
simulation for a short while and use the end point of that as the starting
point for the Newton method. This approach is much more reliable. If
the method does converge to a solution there are various ways to decide
whether convergence has been achieved. Two such tests include:

1. Difference between Successive Solutions Estimates. We can test for
the difference between solution x; and the next estimate, xjp, if
the absolute difference, |x; — x; 1] is below some threshold then we

174 CHAPTER 6. THE STEADY STATE

assume convergence has been achieved. Alternatively we can check
whether the relative error is less than a certain threshold (say, 1%).
The relative error is given by
Xit1 — Xi
e =71 100%
Xi+1

The procedure can be made to stop at the i-th step if | f(x;)| < €f
for a given €.

2. Difference between Successive d.S; /dt Estimates. Here we estimate
the rates of change as the iteration proceeds and assume convergence
has been archived when the difference between two successive rates
of change are below some threshold. If we are dealing with a model
will more than one state variable then we can construct the sums of
squares of the rates of change:

2(a)

The Newton method can be easily extended to systems of equations so that
we can write the Newton method in matrix form:

af(x)
ox

—1
] £ ©6)

Xk+1 =xk—[

If m is the number of state variables or floating species in the model, then
X is an m dimensional vector of species concentrations, f (x) is a vec-
tor containing the m rates of change and d f (x)/dx the m x m Jacobian
matrix.

Newton Algorithm

1. Initialize the values of the concentrations, s, to some initial guess,
obtained perhaps from a short time course simulation.

6.2. COMPUTING THE STEADY STATE 175

2. Compute the values for f (s), that is the left-hand side of the differen-
tial equations (ds/dt).

3. Calculate the matrix of derivatives, d f /ds thatis d(ds/dt)/ds, at the
current estimate for s.

4. Compute the inverse of the matrix d f /ds
5. Using the information calculated so far, compute the next guess Sg 41

6. Compute the sums of squares of the new value of f(s) at sg1. If the
value is less than some error tolerance then assume the solution has
been reached, else return to step 3, using Sx41 as the new starting
point.

Although the Newton method is seductively simple, it requires the initial
guess to be sufficiently close to the solution in order for it to converge. In
addition convergence can be slow or not occur at all. A common problem
is that the method can overshoot the solution and will then being to rapidly
diverge.

A further strategy that is frequently used to compute the steady state is to
first use a short time course simulation to bring the initial estimate closer
to the steady state. The assumption here is that the steady state is stable.
The final point computed in the time course is used to seed a Newton like
method, if the Newton method fails to converge then a second time course
simulation is carried out. This can be repeated as many times as desired.
If there is a suspicion that the steady state is unstable, one can also run
a time course simulation backwards in time. In general there is no sure
way of computing the steady state automatically and sometimes human
intervention is required to supply good initial estimates.

As a result of these issues the unmodified Newton method is rarely used
in practice for computing the steady state of biochemical models. One
common variant, called the Damped Newton method is sometimes used.
Both Gepasi and SCAMP use the Damped Newton method for computing
the steady state. This method controls the derivative, d f/dx by multiply-
ing the derivative by a factor @, 0 < o < 1 and can be used to prevent

PASI 2013 Edition

176 CHAPTER 6. THE STEADY STATE

overshoot. There are many variants on the basic Newton method and good
simulation software will usually have reasonable methods for estimating
the steady state.

In the last ten years more refined Newton like methods have been devised
and one that is highly recommended is NLEQ2 (http://www.zib.de/
en/numerik/software/ant/nleq2.html. This is used by both Jarnac
and PySCeS for computing the steady state. The stiff solver suite sundials
(https://computation.llnl.gov/casc/sundials/main.html alsoin-
corporates an equation solver, however experience has shown that is it not
quite as good as NLEQ2.

Solving the Steady State for a Simple Pathway

We are going to illustrate the use of the Newton-Raphson method to solve
the steady state for the following simple pathway. We will assume that all
three reactions are governed by simple mass-action reversible rate laws.
Species X, and X are assumed to be fixed and only S; and S, and floating
species or state variables.

U1 Uz U3

XO :Sl :SQ :Xl

The differential equations for the model are as follows:

ds
b= (hiXo —kaS1) = (ka1 — ksS2)
t
ds (6.7)
d_t2 = (k3S1 —kaS2) — (k5S2 — ke X1)

The values for the rate constants and the boundary conditions are given in
Table 6.2.

This is a problem with more than one variable (S and S>) which means
we must use the Newton-Raphson matrix form (6.6) to estimate the steady
state. To use this we require two vectors, x and f (x) and one matrix,

http://www.zib.de/en/numerik/software/ant/nleq2.html
http://www.zib.de/en/numerik/software/ant/nleq2.html
https://computation.llnl.gov/casc/sundials/main.html

6.2. COMPUTING THE STEADY STATE 177

Parameter Value

k1 34
ko 0.2
k3 23
ka 0.56
ks 5.6
ke 0.12
Xo 10
X1 0

Table 6.2 Values for example (6.7).

df (x)/0x. The xj vector is simply:

S
=)

The f (xj) vector is given by the values of the differential equations:

| (k1 Xo —k2S1) — (k3S1 — k4 S2)
flx) = |:(k351 —k4S2) — (ksS2 — kdﬁ)}

The 0 f (x)/0x matrix is the 2 by 2 Jacobian matrix. To compute this we
need to form the derivatives which in this case is straight forward given
that the differential equations are simple. In cases involving more com-
plex rates laws, software will usually estimate the derivatives by numeri-
cal means. In this case however it is easy to differentiate the equations to
obtain the following Jacobian matrix:

d(dS:/dt) d(dS:/dt)

Bf(x) _ dSl dS2 . —kz—kg, —k4
dx d(dSy/dt) d(dS,/dr) k3 —k4 — ks
dSy dS;

Notice that the elements of the Jacobian contain only rate constants. This
is because the model we are using is linear. This also means we need

178 CHAPTER 6. THE STEADY STATE

only evaluate the Jacobian and its inverse once. If we used nonlinear rate
laws such as the Michaelis-Menten rate law, the Jacobian matrix would
also contain terms involving the species concentrations and in this case the
Jacobian would need to be reevaluated at each iteration because the value
for the species concentration will change at each iteration. For the current
problem the Jacobian and its inverse is given by:

—2.86 5.6]

Jacobian = [—0.56 ~11.2

Jacobian—! — [—0.3876 —0.1938]
—0.01938 —0.09898

Table 6.3 shows the progress of the iteration as we apply equation 6.6.

What is interesting is that convergence only takes one iteration. This is be-

cause the model is linear. Nonlinear models may require more iterations.

We can also see that after the first iteration the rates of change have very

small values, this is usually due to very small numerical errors in the com-

puter arithmetic but anything as small as 10~4 can be considered zero.

Iteration S S1 dSy/dt dS»/dt
0 1 1 36.74 -10.64
1 13.18 0.6589 2.8x 1071 —1.16x 10713

Table 6.3 Newton-Raphson applied to a Three Step Pathway with Linear
Kinetics. Starting values for S and S, are both set at one. Convergence
occurs within one iteration. Note that the values for the rates of change
are extremely small at the end of the first iteration, indicating we have
converged.

Computing the Steady State Using Software

The previous section showed how to compute the steady state using the
Newton method. In practice we would not write our own solver but use

6.3. EFFECT OF DIFFERENT PERTURBATIONS 179

existing software to accomplish the same thing. To illustrate this, the fol-
lowing Jarnac script will define and compute the steady state all at once:

// Define model

p = defn cell
$Xo -> S1; kixXo - k2%S1;
S1 -> S2; k3%S1 - k4xS2;
S2 -> $X1; k4*S2 - k6%*X1;

end;

// Initialize value

p-Xo = 10; p.X1 = 0;
p-k1 = 3.4; p.k2 = 0.2;
p.-k2 = 2.3; p.k3 = 0.56;
p.-k4 = 5.6; p.k6 = 0.12;

// Initial starting point
p-S1 =1; p.82 = 1;

// Compute steady state
p.ss.eval;
println p.S1, p.S2;

Running the above script yields steady state concentrations of 13.1783 and
0.658915 for S and S respectively, which is the same if we compare
these values to those in Table 6.3. Other tools will have other ways to
compute the steady state, for example graphical interfaces will generally
have a button marked steady state that when selected will compute the
steady state for the currently loaded model.

When using Matlab the function £solve can be use to solve systems of
nonlinear equation and in Mathematica one would use FindRoot.

6.3 Effect of Different Perturbations

When we talk about model dynamics we mean how species levels and
reaction rates change in time as the model evolves. There are a number
of ways to elicit a dynamic response in a model, the two we will consider

180 CHAPTER 6. THE STEADY STATE

here are perturbations to species and perturbations to model parameters.

If the initial concentration of S is zero then we can run a simulation and
allow the system to come to steady state. This is illustrated in Figure 6.4

0.6

e
~
T
\

<
[\
T

S1 approaching steady state -

Concentration of S

| | | | | | | |
0O 2 4 6 8 10 12 14 16 18 20
Time

Figure 6.4 S| approaching steady state. Jarnac model: 6.4

Effect of Perturbing Floating Species

Once at steady state we can consider applying perturbations to see what
happens. For example, Figure 6.7 illustrates the effect of injecting 0.35
units of S; at # = 20 and watching the system evolve. The Jarnac script
used to generate this graph is shown in the chapter Appendix. In prac-
tice we would be accomplished this by injecting 0.35 units of S; into the
volume where the pathway operates. What we observe is that the concen-
tration of S relaxes back to its steady state concentration before the per-
turbation was made (Figure 6.7). When we apply perturbations to species
concentrations and the change relaxes back to the original state, we call
the system stable.

Figure 6.7 illustrates one kind of perturbation that can be made to a bio-
chemical pathway, in this case perturbing one of the floating molecular
species by physically adding a specific amount of the substance to the

6.3. EFFECT OF DIFFERENT PERTURBATIONS 181

pathway. In many cases we will find that the system will recover from
such perturbations as we see in Figure 6.7. We are not limited to single
perturbations, Figure 6.5 shows multiple perturbations, both positive and
negative. Not all systems show this behavior, and those that do not are
called unstable. That is when we perturb a species concentration, instead
of the perturbation relaxing back, it begins to diverge.

1

E 0.8 Perturbation in S;

5]

E 06| |]
g

s 04 T i
2

3 02 Perturbation in Sy -

0 | | | | |
0 10 20 30 40 50 60

Time

Figure 6.5 Multiple Perturbations. The steady state concentration of the
species S1 is 0.5 and a perturbation is made to Sy by adding an additional
0.35 units of S; at time = 20 and removing 0.35 units at time = 40. In
both cases the system relaxes back. Jarnac script: 6.6

Effect of Perturbing Model Parameters

In addition to perturbing floating species we can also perturb the model pa-
rameters. Such parameters include kinetic constants and boundary species.
Equation 7.2 shows how the concentration of species S1 depends on all
the parameters in the model. Moreover, changing any of the parameters
results in a change to the steady state concentration of S and in turn the
steady state flux. When changing a parameter we can do it in two ways,
we can make a permanent change or we can make a change, then some
time later can return the parameter value to its original value. Assuming

182 CHAPTER 6. THE STEADY STATE

that the steady state is stable, a temporary change will result in the steady
state changing then recovering to the original state when the parameter is
changed back. Figure 6.6 shows the effect of perturbing the rate constant,
k1 and then restoring the parameter back to its original value at some time
later. Listing 6.7 shows the Jarnac script that was used to generate this plot.
In some applications other types of perturbations are made. For example
in studying the infusion of a drug where the concentration of the drug is a
model parameter, one might use a slow linear increase in the drug concen-
tration. Such a perturbation is called ramp. More sophisticated analyses
might require a sinusoidal change in a parameter, an impulse or an expo-
nential change. These inputs are described more fully in Chapter ??. The
main point to remember is that parameter changes will usually result in
changes to the steady state concentrations and fluxes.

1

e
o0

e
o

o
~
T

T k1 Restored to original value

Concentration of S

=
(\)
T

Perturbation in k1

O | | | | | | |
0 10 20 30 40 50 60 70 80

Time

Figure 6.6 Effect of Perturbing Model Parameters using the Jarnac
script ??.

6.4 Stability and Robustness

Biological organisms are continually subjected to perturbations. These
perturbations can originate from external influences such as changes in
temperature, light or the availability of nutrients. Perturbations can also

6.5. INTRODUCTION TO STABILITY 183

arise internally due to the stochastic nature of molecular events or by ge-
netic variation. One of the most remarkable and characteristic properties
of living systems is their ability to resist such perturbations and maintain
very steady internal conditions. For example the human body can maintain
a constant core temperature of 36.8°C 0.7 even though external temper-
atures may vary widely. The ability of a biological system to maintain a
steady internal environment is called homeostasis, a phrase introduced by
Claude Bernard almost 150 years ago. Modern authors may also refer to
this behavior as robustness.

6.5 Introduction to Stability

A closely related concept to robustness is stability. We can define the sta-
bility of a pathway in the following way:

A biochemical pathway is dynamically stable at steady state if small
perturbations in the floating species concentrations relax back to the
original state.

We can illustrate a stable system using a simple two step model.

Let us assume that the two step pathway has the following form:

v = k1X0 Uy = kZSl
X, >3 > X1

Figure 6.7 illustrates the results from a simulation of a simple two step
biochemical pathway with one floating species, S;. The Jarnac script used
to generate this graph is given in Table 6.8. The initial concentrations of
the model are set so that it is at steady state, that is no transients are seen
between t = 0 and t = 20. A ¢t = 20 a perturbation is made to the con-
centration of S; by adding 0.25 units of S;. This could be accomplished
by injecting 0.25 units of S into the volume where the pathway resides.
The system is now allowed to evolve further. If the system is stable, the
perturbation will relax back to the original steady state, as it does in the

184 CHAPTER 6. THE STEADY STATE

simulation shown in Figure 6.7. This system therefore appears to be sta-
ble.

1
vy 0.8 i
G
S
5 06| k |
g
= 04+ T S1 Relaxes back |
2
S 02f Perturbation in S y

O | | | |

0 10 20 30 40 50

Time

Figure 6.7 Stability of a simple biochemical pathway at steady state. The
steady state concentration of the species S; is 0.5. A perturbation is made
to 1 by adding an additional 0.25 units of S; at time = 20. The system
is considered stable because the perturbation relaxes back to the original
steady state. See Table 6.8 for Jarnac listing.

The differential equation for the single floating species, S1, is given by

dSi
— =k1Xo—kyS 6.8
7 1X0 — k2 S$q (6.8)

with a steady state solution S; = k1 Xo/k». The question we wish to ask
here is whether the steady state is stable or not? We can show that the two
step model is stable be using the following mathematical argument. If the
system is at steady state, let us make a small perturbation to the steady state
concentration of S1, 857 and ask what is the rate of change of S; + 457 as
a result of this perturbation, that is what is d (S + 851)/dt? The new rate
of change equation is rewritten as follows:

d(Sy + 8S1)

=k1X, —ka(S 58S
T 1Xo — k2(S1 +851)

6.5. INTRODUCTION TO STABILITY 185

If we insert the solution for S (equation 7.2) into the above equation we

are left with:
dsSh

dt

= —k2651 (6.9)

In other words the rate of change of the disturbance, §S; is negative, that
is, the system attempts to reduce the disturbance so that the system returns
back to the original steady state. Systems with this kind of behavior are
called stable. If the rate of change in S; had been positive instead of
negative however, the perturbation would have continued to diverge away
from the original steady state and the system would them be considered
unstable.

Dividing both sides of equation 7.3 by §5 and taking the limit §S — 0, we
find that 0(dS1/dt)/0S1 is equal to —k5. The stability of this simple sys-
tem can therefore be determined by inspecting the sign of d(dS1/dt)/9S1
which can be easily determined by taking the derivative of the differential
equations with respect to the species concentrations. For larger systems
the stability of a system can be determined by looking at all the terms
d(dS;/dt)/dS; which are given collectively by the expression:

d(ds/dr) _

s (6.10)

where J is called the Jacobian matrix containing elements of the form
d(dS;/dt)/dS;. Equation 7.3 can also be written as

= Jds (6.11)

This is a set of linear differential equations that describes the rate of change
in the perturbation §S. J is given by

[95, /d1 38, /dt |
J = : : (6.12)
Sy, /dt Sy /dt

186 CHAPTER 6. THE STEADY STATE

Equation 7.5 is an example of an homogeneous linear differential equation
and has the general form:

dx

— = Ax

dt
As we will see in a later chapter, solutions to such equations are well
known and take the form:

xXj(1) =Y Bje™*!

k=1

That solution involves the sum of exponentials, e*t . The exponents of
the exponentials are given by the eigenvalues of the matrix, 4, namely the
Jacobian matrix 6.12. If the eigenvalues are negative then the exponents
decay (stable) whereas if they are positive the exponents grow (unstable).
We can therefore determine the stability properties of a given model by
computing the eigenvalues of the Jacobian matrix and looking for any pos-
itive eigenvalues. Note that the elements of the Jacobian matrix will often
be a function of the species levels, it is therefore important that the Jaco-
bian be evaluated at the steady state of interest.

There are many software packages that will compute the eigenvalues of a
matrix and there are a small number packages that can compute the Jaco-
bian directly from the biochemical model. For example, the script below
is taken from Jarnac, it defines a simple model, initializes the model val-
ues, computes the steady state and then prints out the eigenvalues of the
Jacobian matrix. For a simple one variable model, the Jacobian matrix
only has a single entry and the eigenvalue corresponds to that entry. The
output from running the script is given below showing that the eigenvalue
is —0.3. Sine we have a negative eigenvalue, the pathway must be stable
to perturbations in Sy.

p = defn model
$Xo -> S1; kixXo;
S1 -> $X1; k2*S1;
end;

// Set up the model initial conditions

6.6. SENSITIVITY ANALYSIS 187

1 =0;

p-Xo = 1; p-X
2; p-k2 0.3;

1
p-k1 = 0.

// Evaluation the steady state

p.ss.eval;

// print the eigenvalues of the Jacobian matriz
println eigenvalues (p.Jac);

// Output follows:
{ -0.3}

6.6 Sensitivity Analysis

Sensitivity analysis at steady state looks at how particular model variables
are influenced by model parameters. There are at least two main rea-
sons why it is interesting to examine sensitivities. The first is a practical
one. Many kinetic parameters we use in building biochemical models can
have a significant degree of uncertainty about them. By determining how
much each parameter has an influence on the model’s state we can decide
whether we should improve our confidence in the particular parameter. A
parameter that has considerable influence but at the same time has signif-
icant uncertainty is a parameter that should be determined more carefully
by additional experimentation. On the other hand a parameter that has lit-
tle influence but has significant uncertainly associated with it, is relatively
unimportant. A sensitivity analysis can therefore be used to highlight pa-
rameters that need better precision.

The second reason for measuring sensitivities is to provide insight. The
degree to which a parameter can influence a variable tells us something
about about the network is responding to perturbations and it responds to
the degree it does. Such a study can be used to answer questions about ro-
bustness and adaptation. We will delay further discussion of this important
topic to part 2 of the book.

How are sensitivities represented? Traditionally there are two way, one
based on absolute sensitivities and the second based on relative sensitiv-
ities. Absolute sensitivities are simply given by the ratio of the absolute

188 CHAPTER 6. THE STEADY STATE

change in the variable to the absolute change in the parameter. That is:
AV
S=—
Ap

where V is the variable and p the parameter. This equation shows finite
changes to the parameter and variable. Unfortunately because most sys-
tems are nonlinear, the value for the sensitivity will be a function of the
size of the finite change. To make the sensitivity independent of the size
of the change, the sensitivity is usually defined in terms of infinitesimal
changes:

_dv

=D

Although absolute sensitivities are simple they have one drawback namely
that the value can be influenced by the units used to measure the variable
and parameter. Often in making experimental measurements we won'’t be
able to measure the quantity using the most natural units, instead we may
have measurements in terms of fluorescence, colony counts, staining on a
gel and so on. Is is most likely that the variable and parameter units will be
quite different and each laboratory may have its own way particular units
is uses. Absolute sensitivities are therefore quite difficult to compare.

S

To get round the problem of units, many people will use relative sensitivi-
ties, These are simple scaled absolute sensitivities:

s_r
dpV

The sensitivity is defined in terms of infinitesimal changes for the same rea-
son cited before. The reader may also recall that elasticities are measured
in this way. Relative sensitivities are immune from the units we use to
measure quantities but also relative sensitivities correspond more closely
to how many measurements are made, often in terms of relative or fold
changes. In practice steady state relative sensitivities should be measured
by taking a measurement at the operating steady state, making a perturba-
tion (preferable a small one), waiting for the system to reach a new steady
state then measuring the system again. It is important to be aware that the
steady state sensitivities measure how a perturbation in a parameter moves
the system from one steady state to another.

6.7. STABILITY 189

6.7 Stability

Figure 6.7 shows a simulation where a species concentration is disturbed
and over time relaxes back to the original steady state. This is an example
of a stable steady state.

The differential equation for the single floating species, S1, is given by

ds
d_tl =k1X0—szl (6-13)

and as we saw before, with a steady state solution

Sl =k1X0/k2 (6.14)

The question we wish to ask here is whether the steady state is stable or not,
that is whether perturbation to species recover or not? We can show that
the two step model is stable by using the following mathematical argument.
The differential equation describing the two step model is given by,

dS;

— =k1Xo —k2S
pT 1X0 — K291

If the system is at steady state, let us make a small perturbation to the
steady state concentration of Sy, 85 and ask how §S; changes as a result
of this perturbation, that is what is d(§S1)/dt? The new rate of change
equation is rewritten as follows:

d(S1 +8S1)

=ki1X, —ko(S S
T 1Xo — k2(S1 +6S1)

If we insert the steady state solution for S; (equation 7.2) into the above
equation we are left with:

déS,
dt

= —k2851 (6.15)

In other words the rate of change of the disturbance itself, §S is negative,
that is, the system attempts to reduce the disturbance so that the system

190 CHAPTER 6. THE STEADY STATE

returns back to the original steady state. Systems with this kind of behavior
are called stable. If the rate of change in S; had been positive instead of
negative however, the perturbation would have continued to diverge away
from the original steady state and the system would them be considered
unstable.

A biochemical pathway is dynamically stable at steady state if small
perturbations in the floating species concentrations relax back to the
original state.

To continue, let us divide both sides of equation 7.3 by §S; and taking
the limit, we find that 9(dS1/dt)/dS; is equal to —k,. The stability of
this simple system can therefore be determined by inspecting the sign of
d(dS1/dt)/dS1 which can be easily determined by taking the derivatives
of the differential equations with respect to the species concentrations.

For larger systems the stability of a system can be determined by looking
at all the terms d(d S; /dt)/dS; which are given collectively by the expres-
sion:

d(ds/dt)
Sl P A
ds
where J is called the Jacobian matrix containing elements of the form

d(dS;/dt)/0S;. Equation 7.3 can be generalized to:

(6.16)

d(3s)
=Js 6.17
7 s (6.17)
where J is given by
[0S,/dt 3Si/dt]
0Sm/dt ~ 0Sm/dt

Equation 7.5 is an example of an unforced linear differential equation and
has the general form:

dx
=4
dt o

6.7. STABILITY 191

Solutions to such equations are well known and take the form:

xj(t) = c1K1eMt + o Kqe?? 4 .o K yetn?

That is the solution to an unforced linear differential equations involves a
sum of exponentials, e’li’, constants ¢; and vectors, K;. The exponents
of the exponentials are given by the eigenvalues (See Appendix C) of the
matrix, A and K; the corresponding eigenvectors. The c; terms are related
to the initial conditions assigned to the problem. It is possible for the
eigenvalues to be complex but in general if the real parts of the eigenvalues
are negative then the exponents decay (stable) whereas if they are positive
the exponents grow (unstable). We can therefore determine the stability
properties of a given model by computing the eigenvalues of the Jacobian
matrix and looking for any positive eigenvalues. Note that the elements
of the Jacobian matrix will often be a function of the species levels, it is
therefore important that the Jacobian be evaluated at the steady state of
interest.

Example 6.1

The following system:
S] b Sz e

if governed by the following set of differential equations:

dS

— =-25

dt !
ds,

— =25, -4S§
dt 1 2

The solution to this system can be derived using Mathematica or by using standard
algebraic method for solving linear homogeneous systems. The solution can be

found to be:
St Y_ (1), -2 0\ —a
(Sz)_“(l)e +c2 1 e

Sl = C1€_2t

S, = c1e 2 + cpe™H

192 CHAPTER 6. THE STEADY STATE

Since the exponents are all negative (-2, -2 and -4), the system is stable to pertur-
bations in S7 and S>.

There are many software packages that will compute the eigenvalues of a
matrix and there are a small number packages that can compute the Jaco-
bian directly from the biochemical model. For example, the script below
is taken from Jarnac, it defines the simple model, initializes the model val-
ues, computes the steady state and then prints out the eigenvalues of the
Jacobian matrix. For a simple one variable model, the Jacobian matrix
only has a single entry and the eigenvalue corresponds to that entry. The
output from running the script is given below showing that the eigenvalue
is —0.3. Since we have a negative eigenvalue, the pathway must be stable
to perturbations in Sy.

p = defn model
$Xo -> S1; ki1xXo;
S1 -> $X1; k2*S1;
end;

// Set up the model initial conditions
p-Xo = 1; p-X1 = 0;
p.k1 = 0.2; p.k2 = 0.

3;

// Evaluation the steady state

p.ss.eval;

// print the eigenvalues of the Jacobian matrix
println eigenvalues (p.Jac);

// Qutput follows:
{ -0.3}

Example 6.2

The following system:
— Sl — Sz —

6.8. PHASE PORTRAITS 193

if governed by the following set of differential equations:

dS:

— =3-28
dt !
ds,

2 o5, —4s
dl 1 2

The Jacobian matrix is computed by differentiating the equations with respect to
the steady state values of S; and S5:

[

The eigenvalues for this matrix are: —2 and —4 respectively. Since both eigenval-
ues are negative the system is stable to small perturbations in S; and S5.

The pattern of eigenvalues can tell us a lot about stability but also about
the form of the transients that will occur when we perturb the state of the
system. In the next section we will investigate this aspect.

6.8 Phase Portraits

The word phase space refers to a space where all possible states are pre-
sented. For example, in a biochemical pathway with two species, x; and
X2, the phase space consists of all possible trajectories of x; and x5 in
time. For two dimensional systems the phase space can be very conve-
niently display on an x/y graph where each axis represents one of the
state variables. A visual representation of the phase space is often called
a phase portrait or phase plane. To illustrate phase portrait consider the
following simple reaction network:

Vo k] X1 k2 X2
—> X1 —> X —>

with two linear differential equations:

dx
d_tl = Vyp — k1x1
d
2 kix1 —kaxo

dr

194 CHAPTER 6. THE STEADY STATE

We can assign particular values to the parameters, set up some initial con-
ditions and plot in phase space the evolution of x; and x,. If we replot
the solution using many different initial conditions we get something that
looks like the plots shown in Figures 7.2 to 7.7.

These plots illustrate a variety of transient behaviors around a steady state.
These particular transient behaviors apply specifically to linear differen-
tial equations. If we have a nonlinear system and we linearize the system
around the steady state, the linearized system will behave in a way sug-

gested by these plots.
A two dimensional linear system of differential equations has solutions of
the form:

X1 = clklellt + czkze'bt

Xp = C3k3€l3t + C4k4ek4t

. \ \ R P
™~ \ | l,f / f/
vy /
A XAy E L L
e v A L i f f 7 -
S § N XY | A4 P
RN YN
— N Ll S A st
i Y \ / ¥ /ﬂ .
— - // '_x'/
& - =
— %
e M e T
e ,/ ‘f VR T
ol Pe / 4 \ e =
A, ‘\\\ v ™
Fallr o A | VNN ~
- s ! ‘ X s
/(/ ,.-'f‘ ‘|' *'.‘ \ *, *,
] \ \
P / { \ \ "\ &

Figure 6.8 Phase portrait for the two species reaction network. Stable
node. Negative Eigenvalues. Matrix A: a;; = —2,a12 = 0,a1 =
—0.15, a3 = —2. Corresponding eigenvalues: A} = —2, A, = —2

The ¢; and k; terms are constants related to the initial conditions and eigen-
vectors respectively but the A; terms, or eigenvalues, determine the quali-
tative pattern that a given behavior might have. It should be noted that the
eigenvalues can be complex or real numbers. In applied mathematics, e
raised to a complex number immediately suggests some kind of periodic

6.8. PHASE PORTRAITS 195

behavior. Let us consider the different possibilities for the values of the
eigenvalues.

Figure 6.9 Phase portrait for the two species reaction network. Unsta-
ble node, also called an improper node. Positive Eigenvalues. Matrix
A: ayp = 1.2,a12 = —2,a21 = —0.05,a3, = 1.35. Corresponding
eigenvalues: A1 = 1.6, A, = 0.95

Both Eigenvalues have the same sign, different magnitude but are real.
If both eigenvalues are negative the equations describe a system known as
a stable node. All trajectories move towards the steady state point. If
the eigenvalues have the same magnitude and the c; terms have the same
magnitude then the trajectories move to the steady state in a symmetric
manner, Figure 7.2. If the k; values differ then the trajectories will tend to
twist, Figure 7.3.

Figure 7.3 shows the case when the two eigenvalues are the same sign
(positive in this case) but of different magnitude, When the eigenvalues
are positive the trajectories move out from the steady state, an unstable
node. Such systems are therefore called unstable.

Real Eigenvalues but of opposite sign. If the two eigenvalues are real but
of opposite sign we get behavior called a saddle-node. This is where in
one direction the trajectories move towards the steady state and in another
direction move away. Since trajectories can only move towards the steady

196 CHAPTER 6. THE STEADY STATE

/ /S | I .
S / A o ; K |I \ \-‘ S
¥/ARRY

Figure 6.10 Phase portrait for the two species reaction network. Saddle
node. One Positive and One Negative Eigenvalue. Matrix A: ay; =
2,a120 = —1l,a»1 = 1,a2, —2. Corresponding eigenvalues: Ay =
—1.73,1, = 1.73

state if they are exactly on the saddle node ridge, but once they reach the
node they will diverge. Saddle nodes are therefore unstable.

Complex Eigenvalues Sometimes the eigenvalues can be complex, that
is of the form a + ib where i is the imaginary number. It may seem
strange that the solution to the differential equations can admit complex
eigenvalues. To understand what these mean we have to recall Euler’s
formula:

elf = cos(0) +isin(0)

Description Eigenvalues Behavior
Both Positive r1 > rp >0 Unstable

Both Negative ri <rp <0 Stable
Positive and Negative r; <0 <r; Saddle point
Complex Conjugate r1 >r1 >0 Unstable spiral
Complex Conjugate r1 <rp <0 Stable spiral
Pure Imaginary r1 =r1 =0 Center

Table 6.4 Summary of Node Behaviors

6.8. PHASE PORTRAITS 197

' / "
f y - e
I -’f [/ : f'/ i
A S R
[|‘ { it T -
| o - oo Y
| l Ld FF b -
Y T ';.f S . -
Vo (/ . T,
\ \ L Ii I VoAl e NN
\ \ R | ..* -(‘ 5 -_‘_‘ \.
N RN g TR K
W N Tl] ¥ \ \
e e /4 | (I T
Sty AT E
e T T
Tl //(A / F |
_ e ,". 7 H 4 *
o / 4 4 4 [
= & /
— i v / xf
-~ / ! / /

Figure 6.11 Phase portrait for the two species reaction network. Sta-
ble spiral node. Negative Complex Eigenvalues. Matrix A: a;; =
—0.5,a12 = —1l,ap1 = l,a; = —1. Corresponding eigenvalues:
A1 =—0.754+0.97i, A, = —0.75 - 0.97i

or extended to:

elatbi _ ,at cos(bt) + i bt sin(bt)

When the solutions are expressed in terms of sums of sine and cosine
terms, the imaginary parts will cancel out, leaving just trigonometric terms
with only real parts.

We can show this as follows. Consider the system:

x(t) = c1z1eATIE 4)7 oAiE

where z; and z, are corresponding conjugate eigenvectors. Using Euler’s
formula, e = cos(u) + i sin(u) and that e AW = gLl we obtain:

x(t) = clzlem(cos(,ut) + i sin(ut))
+czzze“(cos(ut) — i sin(ut))

Writing the conjugate eigenvectors as z; = a + bi and z, = a — bi, we

198 CHAPTER 6. THE STEADY STATE

Figure 6.12 Phase portrait for the two species reaction network. Unstable
spiral node. Positive Complex Eigenvalues. Matrix A: a;; = 0,a12 =
1.0,a21 = —1.2,a3> = 0.2. Corresponding eigenvalues: A; = 0.1 +
1.09i,A, = 0.1 —1.09i

get:
x(t)=ci(a + bi)e“(cos(,ut) + i sin(ut))
+(a — bi)e)”(cos(ut) — i sin(ut))

Multiply out and separate the real and imaginary parts yields:

x(t) = eM [c1(acos(uut) — bsin(ut) + i(asin(ut) + b cos(ut)))
+ ca(acos(ut) — bsin(ut) —i(asin(ut) + b cos(ut)))]

The complex terms cancel leaving only the real parts. If we set ¢; + ¢c2 =
k1 and (¢1 — ¢2)i = k, then:

x(t) = M [k1(acos(uut) — b sin(ut))
ko(a sin(ut) + b cos(ut))]

The solution is real when the constants ¢1 and ¢ are real. This will only
be the case when the eigenvalues are a conjugate pair, (a £ ib) which is
the case we are looking at. Therefore systems that admit a complex pair of
conjgate eigenvalues result in periodic real solutions.

6.8. PHASE PORTRAITS 199

Figure 6.13 Phase portrait for the two species reaction network. Cen-
ter node. Complex Eigenvalues, Zero Real Part. Matrix 4A: a;; =
l,a1p = 2.0,a1 = —2,a5 = —1. Corresponding eigenvalues:
A1 =0+ 1.76i,1, =0—1.76i

This result shows that the appearance of complex numbers in the eigen-
values results in periodic solutions. For this reason solution with complex
eigenvalues tend to display trajectories such as those shown in Figure ??
and 7.7. If the real parts are positive then the spiral trajectories move out-
wards (unstable). If the real parts of the eigenvalues are negative then the
spiral trajectory moves into the steady state (stable).

200 CHAPTER 6. THE STEADY STATE

Conjugate Pair

A complex conjugate pair is a complex number of the form: a & bi.
The eigenvalues for a two variable linear system system with matrix A,
can be computed directly using the relation:

_tr(4) £ Vtr2(A) — 4 det (A)
B 2

A

where tr (A) = a+d and det (A) = ad — bc. If the term in the square
root is negative, the eigenvalues will always come out as a conjugate
pair owning to the & term. If tr?(A) — 4 det(A) < O then the solution
will be the conjugate pair:

_tr(A) N Vtr2(A) — 4 det(A)
2 2

A

Therefore a complex eigenvalue will always be accompanied by its con-
jugate partner.

A J
., | A:stable node B: stable focus C: saddle point D: unstable focus | | E:unstable node
% Im Im Im Im Im
| -| | K
.:E:‘ | Re ° | Re | Re | ® Re Re
I | @), |2 | @) Sl
N i /N

(Stable States) (Unstable States)

Figure 6.14 Summary of behaviors including dynamics and associated
eigenvalues for a two dimensional linear system. Adapted from “Com-
putational Models of Metabolism: Stability and Regulation in Metabolic
Networks”, Adv in Chem Phys, Vol 142, Steuer and Junker.

6.9. BIFURCATION PLOTS 201

6.9 Bifurcation Plots

In its simplest form, a bifurcation plot is just a plot of the steady state value
of a system variable, such as a concentration versus a parameter of the
system. For example we saw that the steady state solution for the simple
system:

dsS;
— =k1Xo—kaS
T 140 — K291
was given by:
Sl =k1X0/k2

We can now plot the steady state value of Sp as a function of k5, as shown
in Figure 7.9.

1

n 0.8 8
(35

]

g 06 |
g

£ 04 |
3

=]

3 02 |

O | | | | | I T

0 5 10 15 20 25 30 35 40
ko

Figure 6.15 Steady state concentration of S as a function of k, for the
system, dS1/dt = k1 X, — k251

Of more interest is that bifurcation plots can be used to identify changes in
qualitative behavior, particularly systems that have multiple steady states.
Consider the system shown 7.10. This shows a simple gene circuit with a
positive feedback loop. That is as the transcription factor x accumulates it
binds to an operator site on the gene which increases its synthesis.

202 CHAPTER 6. THE STEADY STATE

Ilii’%_”’

Figure 6.16 System with Positive Feedback

From the circuit diagram we can construct a simple model. This model
uses the following kinetic laws for the synthesis and degradation steps.

We can plot both rate laws as a function of transcription factor x to obtain
the figure shown in Figure 7.11. If we vary the slope of v,, buy chang-
ing k3, the intersection points will change. We can plot the intersection
points as a function of k3. If we do this we obtain the diagram shown in
Figure 7.12.

Figure 7.12 shows that at some value of the parameter k3, the system has
three possible steady states, outside this range only single steady state
persists. Bifurcation diagrams are extremely useful for uncovering and
displaying such information. Drawing bifurcation diagrams is not easy
however. There are some software tools that can help. Figure 7.12 for
example was generated using the SBW Auto C# tool, available at http:
//jdesigner.sourceforge.net/Site/Auto_C.html. Another useful
tool for drawing bifurcation diagrams is Oscill8, available from http:
//oscill8.sourceforge.net/. Both tools can read SBML. Figure 7.12
was generated first by entering the model into Jarnac (Shown in listing 7.1)
to generate the SBML. The model was then passed to Auto C# to produce
the bifurcation diagram.

Bistability will be discussed in more detail in a separate volume.

p = defn cell

http://jdesigner.sourceforge.net/Site/Auto_C.html
http://jdesigner.sourceforge.net/Site/Auto_C.html
http://oscill8.sourceforge.net/
http://oscill8.sourceforge.net/

6.9. BIFURCATION PLOTS 203

1
0.8} U1 N
I\
g 0.6 |- .
= V2
= 04] :
0.2 |
0 | | | | | | |
0 02 04 06 038 1 1.2 14

X

Figure 6.17 Reaction velocities, v, and v, as a function of x for the
system, Figure 7.9. The intersection points marked by fill circles indicate
possible steady states.

3
=
g 27 |
g
=
S
g 1l . 1
O et
0 ! e, T dreeans . rrend
0 02 04 06 038 1 1.2 14

Figure 6.18 Plotting intersection points from Figure 7.11 as a function of
k3. Dotted line marks the lower intersection point, dashed line the middle
intersection points, and solid line the upper intersection point.

204 CHAPTER 6. THE STEADY STATE

$Xo -> x; 0.1 + ki1*x~4/(k11+x"4);
x -> $w; k2x*x;
end;

// Initialization here
p-k1 = 0.9; p.k11 = 0.3;
p-k2 = 0.7;

// Compute steady state
p-ss.eval;

Listing 6.1 Model used to create Figure 7.12

Further Reading

1. Sauro HM (2011) Enzyme Kinetics for Systems Biology. ISBN:
978-0982477311

2. Kipp E, Herwig R, Kowald A, Wierling C and Lehrach H (2005)
Systems Biology in Practice, Wiley-VCH Verlag

3. Jarnac web site http://sbw-app.org/jarnac/

Exercises

1. Explain what is meant by a stable and unstable steady state.
2. Derive equation 6.5.

3. The steady state of a given pathway is stable. Explain the effect in
general terms on the steady state if:

a) A bolus of floating species is injected into the pathway

b) A permanent change to a kinetic constant.

http://sbw-app.org/jarnac/

6.9. BIFURCATION PLOTS 205

Appendix

See http://sbw-app.org/jarnac/ for more details of Jarnac.

p = defn cell
A -> B; kixA;
B -> A; k2xB;
end;

p-A = 10; p.kl1l = 1;
p.-B=0; p.k2 =0.5;

m = p.sim.eval (0, 3, 100);
graph (m);

Listing 6.2 Script for Figure 4.1

p = defn cell
$Xo -> S1; vo;
S1 -> S2; ki1*S1 - k2xS52;
S2 -> $X1; k3x%S2;

end;

p.-vo = 1;

p-k1 = 2; p. k2 = 0;
p-k3 = 3;

m = p.sim.eval (0, 6, 100);
graph (m);

Listing 6.3 Script for Figure 4.2

p = defn newModel
$Xo -> S1; kix*Xo;
S1 -> $X1; k2x%S1;
end;

p-k1 = 0.2;

http://sbw-app.org/jarnac/

206 CHAPTER 6. THE STEADY STATE

p.-k2 = 0.4;
p-Xo = 1;
p-S1 = 0.0;

m = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);
graph (m);

Listing 6.4 Script for Figure 6.4

p = defn newModel
$Xo -> S1; ki1xXo;
S1 -> $X1; k2%S1;

end;

p-k1 = 0.2;
p-k2 = 0.4;
p-Xo = 1;
p.-S1 = 0.5;

// Simulate the first part up to 20 time units
ml = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]1);

// Perturb the concentration of S1 by 0.35 units
p.-S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 50, 100, [<p.time>, <p.S1>]);

// MHerge and plot the two halves of the simulation
graph (augr(mil, m2));

Listing 6.5 Script for Figure 6.7

p = defn newModel
$Xo -> S1; kix*Xo;
S1 -> $X1; k2%S1;
end;

p.-k1 = 0.2;

6.9. BIFURCATION PLOTS

207

p-k2 = 0.4;
p-Xo = 1;
p-S1 = 0.0;

// Simulate the first part up to 20 time units

ml = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

// Perturb the concentration of S1 by 0.35 units
p-S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 40, 50, [<p.time>, <p.S1>]);

// Merge the data sets
m3 = augr(ml, m2);
// Do a negative perturbation in S1

p.-S1 = p.S1 - 0.35;

// Continue simulating from last end point

m4 = p.sim.eval (40, 60, 50, [<p.time>, <p.S1>]1);

// Herge and plot the final two halves of the simulation

graph (augr(m3, m4));

Listing 6.6 Script for Figure 6.5

p = defn newModel
$Xo -> S1; kixXo;
S1 -> $X1; k2%S1;

end;

p-k1 = 0.2;
p-k2 = 0.4;
p-Xo = 1;
p.S1 = 0.5;

// Simulate the first part up to 20 time units
ml = p.sim.eval (0, 20, 5, [<p.time>, <p.S1>]);

// Perturb the parameter ki

208 CHAPTER 6. THE STEADY STATE

p-k1 = p.k1*x1.7;

// Simulate from the last point
m2 = p.sim.eval (20, 50, 40, [<p.time>, <p.S1>]1);

// Restore the parameter back to ordinal value

p-k1 = 0.2;

// Carry out final run of the simulation

m3 = p.sim.eval (50, 80, 40, [<p.time>, <p.S1>]);

// Merge all data sets and plot
m4 = augr(augr(ml, m2), m3);
graph (m4);

Listing 6.7 Script for Figure 6.6

p = defn newModel
$Xo -> S1; kixXo;
S1 -> $X1; k2%S1;

end;

p-k1 = 0.2;
p-k2 = 0.4;
p-Xo = 1;
p-S1 = 0.5;

// Simulate the first part up to 20 time units
ml = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

// Perturb the concentration of S1 by 0.35 units
p.-S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 50, 100, [<p.time>, <p.S1>]);

// Merge and plot the two halwes of the simulation
graph (augr(ml, m2));

6.9. BIFURCATION PLOTS 209

Listing 6.8 Jarnac script used to generate Figure 6.7.

210 CHAPTER 6. THE STEADY STATE

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft (.82,
www.sys-bio.org

Stability

7.1 Stability

The last chapter briefly introduced the concept of stability of biochemical
networks. IN this chapter we will delve more deeply into this topic/

Figure 6.7 shows a simulation where a species concentration is disturbed
and over time relaxes back to the original steady state. This is an example
of a stable steady state.

The differential equation for the single floating species, S1, is given by

dSq
— =k1Xo—k,S 7.1
' 1X0 — kS (7.1)

and as we saw before, with a steady state solution

Sl =k1X0/k2 (7.2)

The question we wish to ask here is whether the steady state is stable or not,
that is whether perturbation to species recover or not? We can show that
the two step model is stable by using the following mathematical argument.

211

212 CHAPTER 7. STABILITY

The differential equation describing the two step model is given by,

dsS;
— =k1Xo — k2§
p7 140 — K291

If the system is at steady state, let us make a small perturbation to the
steady state concentration of Sy, 65 and ask how §S; changes as a result
of this perturbation, that is what is d(8S1)/dt? The new rate of change
equation is rewritten as follows:

d(S1 + 8S1)

=ki1X, —ko(S S
T 1Xo — k2(S1 + 6S1)

If we insert the steady state solution for S; (equation 7.2) into the above
equation we are left with:

dsSy
dt

= —k2651 (7.3)

In other words the rate of change of the disturbance itself, §S; is negative,
that is, the system attempts to reduce the disturbance so that the system
returns back to the original steady state. Systems with this kind of behavior
are called stable. If the rate of change in S1 had been positive instead of
negative however, the perturbation would have continued to diverge away
from the original steady state and the system would them be considered
unstable.

Another way to look this is graphically. Let us plot rate of change, dS/dt
as a function of S, Figure 7.1. The steady state is given where the net rate
of change, is zero. If the substrate level fall below this value, the net rate
goes positive there by increasing the level of S;. On the other hand if the
substrate rises above the steady state level, the graph shows that the net
rate of change goes negative so that S is brought back down. The system
is therefore stable.

A biochemical pathway is dynamically stable at steady state if small
perturbations in the floating species concentrations relax back to the
original state.

7.1. STABILITY 213

1 T T T T T T T
g 05 \ .
|
— Netpgsitive
=0
I \\ Net negative
vT‘ 5 T
~IS05) | o
Steady state level of S
| | | | | |

|
0 02 04 06 08 1 12 1.4
Substrate Concentration

Figure 7.1 Rate of change as a function of S;, When S is below the
steady state value, the net change is positive meaning that S; will increase.
When S is above the steady state value, the net change is negative mean-
ing that §7 will decrease. The system is therefore stable.

To continue, let us divide both sides of equation 7.3 by §S; and taking
the limit, we find that d(dS1/dt)/dS1 is equal to —k,. The stability of
this simple system can therefore be determined by inspecting the sign of
d(dS1/dt)/dS1 which can be easily determined by taking the derivatives
of the differential equations with respect to the species concentrations.

For larger systems the stability of a system can be determined by looking

at all the terms d(d S; /dt)/dS; which are given collectively by the expres-
sion:

d(ds/dt)
ds =J

where J is called the Jacobian matrix containing elements of the form
d(dS;/dt)/0S;. Equation 7.3 can be generalized to:

(7.4)

d(8s) _

J§ 7.5
7 s (7.5)

214 CHAPTER 7. STABILITY

where J is given by

0Sy/dt 3Sy/dt |
0Sw/di 0Sp/d1
| aSl aSm _

Equation 7.5 is an example of an unforced linear differential equation and
has the general form:

dx

— = Ax

dt
Solutions to such equations are well known and take the form:

xj(t) = clKleA‘t + cszeMt + ---c,,KneA”t

That is the solution to an unforced linear differential equations involves a
sum of exponentials, eki’, constants ¢; and vectors, K;. The exponents
of the exponentials are given by the eigenvalues (See Appendix C) of the
matrix, A and K; the corresponding eigenvectors. The ¢; terms are related
to the initial conditions assigned to the problem. It is possible for the
eigenvalues to be complex but in general if the real parts of the eigenvalues
are negative then the exponents decay (stable) whereas if they are positive
the exponents grow (unstable). We can therefore determine the stability
properties of a given model by computing the eigenvalues of the Jacobian
matrix and looking for any positive eigenvalues. Note that the elements
of the Jacobian matrix will often be a function of the species levels, it is
therefore important that the Jacobian be evaluated at the steady state of
interest.

Example 7.1

The following system:
Sl i S2 —>

7.1. STABILITY 215

if governed by the following set of differential equations:

dS:

— =-28

dt !

ds,

— =25, —-4S§
dt 1 2

The solution to this system can be derived using Mathematica or by using standard
algebraic method for solving linear homogeneous systems. The solution can be

found to be:
S1 _ 1 —2t 0 —a4t
(Sz)_cl(l)e +c 1 e

S] = C1€_2t

S, =cre X + cre?

Since the exponents are all negative (-2, -2 and -4), the system is stable to pertur-
bations in S7 and S>.

There are many software packages that will compute the eigenvalues of a
matrix and there are a small number packages that can compute the Jaco-
bian directly from the biochemical model. For example, the script below
is taken from Jarnac, it defines the simple model, initializes the model val-
ues, computes the steady state and then prints out the eigenvalues of the
Jacobian matrix. For a simple one variable model, the Jacobian matrix
only has a single entry and the eigenvalue corresponds to that entry. The
output from running the script is given below showing that the eigenvalue
is —0.3. Since we have a negative eigenvalue, the pathway must be stable
to perturbations in Sj.

p = defn model
$Xo -> S1; ki1xXo;
S1 -> $X1; k2*S1;
end;

// Set up the model initial conditions
p.-Xo = 1; p-X1 = 0;

216 CHAPTER 7. STABILITY

p-k1 = 0.2; p.k2 = 0.3;

// Evaluation the steady state

p-ss.eval;

// print the eigenvalues of the Jacobian matrix
println eigenvalues (p.Jac);

// Output follows:
{ -0.3}

Example 7.2

The following system:
—> S] —> S2 —>

if governed by the following set of differential equations:

dS

D1 _3_ sy
dt !
ds,

92 _ 55, —48
dt 1 2

The Jacobian matrix is computed by differentiating the equations with respect to
the steady state values of S; and S5:

SR

The eigenvalues for this matrix are: —2 and —4 respectively. Since both eigenval-
ues are negative the system is stable to small perturbations in S; and S,.

The pattern of eigenvalues can tell us a lot about stability but also about
the form of the transients that will occur when we perturb the state of the
system. In the next section we will investigate this aspect.

7.2. PHASE PORTRAITS 217

7.2 Phase Portraits

The word phase space refers to a space where all possible states are pre-
sented. For example, in a biochemical pathway with two species, x; and
X2, the phase space consists of all possible trajectories of x; and x5 in
time. For two dimensional systems the phase space can be very conve-
niently display on an x/y graph where each axis represents one of the
state variables. A visual representation of the phase space is often called
a phase portrait or phase plane. To illustrate phase portrait consider the
following simple reaction network:

Vo k1 x1 ks x2
— X] ——> Xp ——>

with two linear differential equations:

dx
d_l‘l = Vp — k1x1
% = k1x1 —kzXz

We can assign particular values to the parameters, set up some initial con-
ditions and plot in phase space the evolution of x; and x,. If we replot
the solution using many different initial conditions we get something that
looks like the plots shown in Figures 7.2 to 7.7.

These plots illustrate a variety of transient behaviors around a steady state.
These particular transient behaviors apply specifically to linear differen-
tial equations. If we have a nonlinear system and we linearize the system
around the steady state, the linearized system will behave in a way sug-
gested by these plots.

A two dimensional linear system of differential equations has solutions of
the form:

At Aot

x1 = crkie™ + crkpe

Xy = C3/€3€A3t + C4k4€k4t

218 CHAPTER 7. STABILITY

\ T,
\\ \\ \ | i ;f / e
\ \ \ I / ’
B ‘l.\ Yy K- 2
~. N\ \ { o g Vi ’/.
- ‘\.‘\‘ \‘! *I’t-’ v -
e \ i)'/, i
A
e P
o L =
—— = —
e 05 iy
ay d 4; 8 "‘fh‘x%
sl iY (S N
- A £ S/ fl s LR TR
b, 4 \ %R R el
/ / b
VA B A LU
P / | \ .
/ Fs | \ N "

Figure 7.2 Phase portrait for the two species reaction network. Stable

node. Negative Eigenvalues. Matrix A: a;; = —2,a12 = 0,a31 =
—0.15, a5 = —2. Corresponding eigenvalues: A; = —2, A, = —2

The c; and k; terms are constants related to the initial conditions and eigen-
vectors respectively but the A; terms, or eigenvalues, determine the quali-
tative pattern that a given behavior might have. It should be noted that the
eigenvalues can be complex or real numbers. In applied mathematics, e
raised to a complex number immediately suggests some kind of periodic
behavior. Let us consider the different possibilities for the values of the
eigenvalues.

Both Eigenvalues have the same sign, different magnitude but are real.
If both eigenvalues are negative the equations describe a system known as
a stable node. All trajectories move towards the steady state point. If
the eigenvalues have the same magnitude and the ¢; terms have the same
magnitude then the trajectories move to the steady state in a symmetric
manner, Figure 7.2. If the k; values differ then the trajectories will tend to
twist, Figure 7.3.

Figure 7.3 shows the case when the two eigenvalues are the same sign
(positive in this case) but of different magnitude, When the eigenvalues
are positive the trajectories move out from the steady state, an unstable
node. Such systems are therefore called unstable.

Real Eigenvalues but of opposite sign. If the two eigenvalues are real but

7.2. PHASE PORTRAITS 219

Figure 7.3 Phase portrait for the two species reaction network. Unsta-
ble node, also called an improper node. Positive Eigenvalues. Matrix
A: ayn = 1.2,a12 = —2,a21 = —0.05,a3, = 1.35. Corresponding
eigenvalues: A1 = 1.6, A, = 0.95

of opposite sign we get behavior called a saddle-node. This is where in
one direction the trajectories move towards the steady state and in another
direction move away. Since trajectories can only move towards the steady
state if they are exactly on the saddle node ridge, but once they reach the
node they will diverge. Saddle nodes are therefore unstable.

Complex Eigenvalues Sometimes the eigenvalues can be complex, that
is of the form a + ib where i is the imaginary number. It may seem
strange that the solution to the differential equations can admit complex
eigenvalues. To understand what these mean we have to recall Euler’s
formula:

e'f = cos(0) +isin(0)

or extended to:

@bt — pat oos(br) + ieb sin(bt)

When the solutions are expressed in terms of sums of sine and cosine
terms, the imaginary parts will cancel out, leaving just trigonometric terms
with only real parts.

220 CHAPTER 7. STABILITY

Figure 7.4 Phase portrait for the two species reaction network. Saddle
node. One Positive and One Negative Eigenvalue. Matrix A: ay; =
2,a1p = —l,az1 = 1,a3p = —2. Corresponding eigenvalues: A; =
—1.73,1, = 1.73

We can show this as follows. Consider the system:

(Aipt (A—ip)e

x(t) =ciz1e + cazpe

where z; and z, are corresponding conjugate eigenvectors. Using Euler’s
formula, ! = cos(u) + i sin(u) and that e A+ = oA piltt e obtain:

x(t) = clzle)”(cos(,ut) + i sin(ut))
+czzze“(cos(,ut) — i sin(ut))

Description Eigenvalues Behavior
Both Positive ri >ra >0 Unstable
Both Negative rp <rp <0 Stable

Positive and Negative r; <0 <ry; Saddle point
Complex Conjugate r1 >ry; >0 Unstable spiral
Complex Conjugate r1 <rp <0 Stable spiral
Pure Imaginary r1p =r1 =0 Center

Table 7.1 Summary of Node Behaviors

7.2. PHASE PORTRAITS 221

Figure 7.5 Phase portrait for the two species reaction network. Sta-
ble spiral node. Negative Complex Eigenvalues. Matrix A: a;; =
—0.5,a12 = —1l,ap1 = l,a; = —1. Corresponding eigenvalues:
A1 =—0.754+0.97i, A, = —0.75 - 0.97i

Writing the conjugate eigenvectors as z; = a + bi and z; = a — bi, we
get:
x(t)=ci(a + bi)e“(cos(,ut) + i sin(ut))
+(a — bi)e’u(cos(ut) — i sin(ut))
Multiply out and separate the real and imaginary parts yields:

x(t) = et [c1(acos(ut) — bsin(ut) + i(asin(ut) + b cos(ut)))
+ ca(acos(ut) — bsin(ut) —i(asin(ut) + b cos(ut)))]

The complex terms cancel leaving only the real parts. If we set ¢; + ¢ =
kq and (c1 — ¢2)i = k; then:

x(t) = e* [ky(a cos(ut) — bsin(ut))
ka(asin(ut) + b cos(ut))]

The solution is real when the constants ¢y and c; are real. This will only
be the case when the eigenvalues are a conjugate pair, (a £ ib) which is

222 CHAPTER 7. STABILITY

Figure 7.6 Phase portrait for the two species reaction network. Unstable
spiral node. Positive Complex Eigenvalues. Matrix A: a;; = 0,a12 =
1.0,a21 = —1.2,a3> = 0.2. Corresponding eigenvalues: A; = 0.1 +
1.09i,A, = 0.1 —1.09i

the case we are looking at. Therefore systems that admit a complex pair of
conjgate eigenvalues result in periodic real solutions.

This result shows that the appearance of complex numbers in the eigen-
values results in periodic solutions. For this reason solution with complex
eigenvalues tend to display trajectories such as those shown in Figure ??
and 7.7. If the real parts are positive then the spiral trajectories move out-
wards (unstable). If the real parts of the eigenvalues are negative then the
spiral trajectory moves into the steady state (stable).

7.2. PHASE PORTRAITS 223

Figure 7.7 Phase portrait for the two species reaction network. Cen-

ter node. Complex Eigenvalues, Zero Real Part. Matrix 4A: a;; =
l,a1p = 2.0,a1 = —2,a5 = —1. Corresponding eigenvalues:

A =0+ 1.76i,A, = 0—1.76i

Conjugate Pair

A complex conjugate pair is a complex number of the form: a + bi.
The eigenvalues for a two variable linear system system with matrix A,
can be computed directly using the relation:

_ tr(A) £ Vu2(A) — 4 det (A)
B 2

A

where tr (A) = a+d and det (A) = ad — bc. If the term in the square
root is negative, the eigenvalues will always come out as a conjugate
pair owning to the & term. If tr?(4) — 4 det(A) < O then the solution
will be the conjugate pair:

_tr(A) N Vir2(A) — 4 det(A)
2 2

A

Therefore a complex eigenvalue will always be accompanied by its con-
jugate partner.

"

224 CHAPTER 7. STABILITY

. | A:stable node B: stable focus C: saddle point D: unstable focus E: unstable node

;3: Im Im Im Im Im

] .| | £

:g:‘ | Re ° | Re | Re | ® Re Re

NS : I\ @ N/

5| /N i 1N
(Stable States) (Unstable States)

Figure 7.8 Summary of behaviors including dynamics and associated
eigenvalues for a two dimensional linear system. Adapted from “Com-
putational Models of Metabolism: Stability and Regulation in Metabolic
Networks”, Adv in Chem Phys, Vol 142, Steuer and Junker.

7.3 Bifurcation Plots

In its simplest form, a bifurcation plot is just a plot of the steady state value
of a system variable, such as a concentration versus a parameter of the
system. For example we saw that the steady state solution for the simple
system:

dsSi
— =k1Xo— kS
pr 140 — K201

was given by:

Sl = k1X0/k2

We can now plot the steady state value of Sp as a function of k5, as shown
in Figure 7.9.

Of more interest is that bifurcation plots can be used to identify changes in
qualitative behavior, particularly systems that have multiple steady states.
Consider the system shown 7.10. This shows a simple gene circuit with a
positive feedback loop. That is as the transcription factor x accumulates it
binds to an operator site on the gene which increases its synthesis.

7.3. BIFURCATION PLOTS 225

1
n 0.8 .
Gy
o
£ 06] |
8
£ 04f 8
3
=}
S 02} .
O | | | | [I T

0 5 10 15 20 25 30 35 40
ko

Figure 7.9 Steady state concentration of S as a function of k, for the
system, dS1/dt = k1 X, — k2 S1

I_.laii»%_”»

Figure 7.10 System with Positive Feedback

From the circuit diagram we can construct a simple model. This model
uses the following kinetic laws for the synthesis and degradation steps.

)C4

k2 + x4
Uy = k3x

v1=k1

We can plot both rate laws as a function of transcription factor x to obtain
the figure shown in Figure 7.11. If we vary the slope of v,, buy chang-
ing k3, the intersection points will change. We can plot the intersection
points as a function of k3. If we do this we obtain the diagram shown in
Figure 7.12.

226 CHAPTER 7. STABILITY

1
08| U1 N
N
j; 0.6 - .
= 2
= 04} :
0.2 |
0 | | | | | | |
0 02 04 06 038 1 1.2 14

X

Figure 7.11 Reaction velocities, v, and v, as a function of x for the
system, Figure 7.9. The intersection points marked by fill circles indicate
possible steady states. Computed using the SBW AUTO C# Tool.

3
=
g o |
g
£
8
s 1 K §
@] ___-‘
0 ! e, T T T ‘resd
0 02 04 06 038 1 1.2 14

Figure 7.12 Plotting intersection points from Figure 7.11 as a function of
k3. Dotted line marks the lower intersection point, dashed line the middle
intersection points, and solid line the upper intersection point.

7.3. BIFURCATION PLOTS 227

Figure 7.12 shows that at some value of the parameter k3, the system has
three possible steady states, outside this range only single steady state
persists. Bifurcation diagrams are extremely useful for uncovering and
displaying such information. Drawing bifurcation diagrams is not easy
however. There are some software tools that can help. Figure 7.12 for
example was generated using the SBW Auto C# tool, available at http:
//jdesigner.sourceforge.net/Site/Auto_C.html. Another useful
tool for drawing bifurcation diagrams is Oscill8, available from http:
//0oscill8.sourceforge.net/. Both tools can read SBML. Figure 7.12
was generated first by entering the model into Jarnac (Shown in listing 7.1)
to generate the SBML. The model was then passed to Auto C# to produce
the bifurcation diagram.

Bistability will be discussed in more detail in a separate volume.

p = defn cell
$Xo -> x; 0.1 + ki1xx~4/(k11+x"4);
x -> $w; k2x*x;
end;

// Initialization here
p-k1 = 0.9; p.k11 = 0.3;
p-k2 = 0.7;

// Compute steady state
p.ss.eval;

Listing 7.1 Model used to create Figure 7.12

Further Reading

1. Steuer R and Junker BH (2009). Computational models of metabolism:
stability and regulation in metabolic networks. Advances in chemi-
cal physics, 142, 105.

http://jdesigner.sourceforge.net/Site/Auto_C.html
http://jdesigner.sourceforge.net/Site/Auto_C.html
http://oscill8.sourceforge.net/
http://oscill8.sourceforge.net/

228 CHAPTER 7. STABILITY

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.9,
www.sys-bio.org

Multicompartmental System

8.1 Multicompartment Systems

It is easy to think of a biological cell as a well mixed compartment and
base our models around that premise. However, anyone who has looked
through a microscope at a drop of pond water and observed swimming
protists will quickly realize that many cells are highly structured and com-
partmentalized. In eukaryotic cells the most obvious compartments are the
nucleus, mitochondria, chloroplasts and a wide variety of enclose spaces
serving different functions. In all these cases, movement of material occurs
from one compartment to another, sometime active (requiring energy) and
sometime passive. In addition all the compartments have widely different
volumes.

8.2 Simple Diffusion

Let us start be considering the simplest possible example, the reversible
and passive diffusion of solute from one compartment of volume V; to
another compartment of volume V> (Figure 8.1).

229

230 CHAPTER 8. MULTICOMPARTMENTAL SYSTEM

A

Sl > S2

Vi Vs

Figure 8.1 Two compartment model with volumes V; and V5. S7 and S>
diffusion passively across the membrane with area A4.

Let us assume that the volume in compartment two is ten times the volume
in compartment one. This means that as mass moves from V; to V5 will
be be diluted in the large volume at V,. This means that even though
the concentration of S; in V; might change by 10%, in volume V5 it will
only change by 1%. We therefore have to account for this when we write
the differential equations that describe the change in S; and S»>. The key
to this is to describe the rates of change in terms of amounts rather than
concentrations. Let us define the amount of S; and S» as follows :
ni na

S = — S, = —=
1 7 2 v,

where n1 and n, are the amounts of Sy and S, respectively. According
to Fick’s first law of diffusion, the flux is proportional to the concentration
gradient across the membrane:

ds
Jg=-Dy—>
A Adx

The negative sign ensures that the flux is positive when the concentration
gradient is negative, that is declining left to right. Jy4 is the flux in units
of moles 172 t~! (moles per unit area per time), D4 the diffusion coeffi-
cient has units of 12 t~! (area per unit time), S is the concentration and
dS /dx the concentration gradient in units of moles 173 171, that is moles
per volume per length.

If the zone of diffusion has a width §, we can approximate Fick’s law:
Sout - Sin

Ja=—Dy 5

PASI 2013 Edition

8.2. SIMPLE DIFFUSION 231

or

[Ja = P4(Sin = Sow) oy

where P4 equals D4 /8 and is called the permeability coefficient with units
of length per unit time (often cm ¢ ~1). We assume here that the permeabil-
ity is the same on both sides of the membrane. The units of flux at this
stage are moles per unit area per unit time (moles cm~2 ¢~!. To obtain
the total amount of mass that moves from one compartment to another we
must multiply the flux, J4, by the cross-sectional area of the membrane
area, thus:
J =AJy

where J is the total amount of substance crossing the membrane and A4 the
area of the membrane. If this substance is moving into a volume V, then
the rate of change of concentration in the compartment is given by:

ds J

dt %

The negative sign indicates that mass is leaving the compartment. We can
now write the differential equations for the two compartment model:

as, J dS, J

dr v dt W
where the flux J is given by:

J = AP4(S$1 - 82)

The result should be thermodynamically consistent. To test this we set the
rate of change of S to zero, that is:

AP,
2§~ 8y =0
Vl(l 2)

That is S; = S5. Since we are dealing with simple diffusion we expect at
thermodynamic equilibrium for the two concentrations to be equal, which
they are. Note also that the units are consistent, with U(4) = [2, U(V;) =
13, UPy) =1t and U(Sy) = mol /3.

232 CHAPTER 8. MULTICOMPARTMENTAL SYSTEM

8.3 Catalytic Reaction across a Membrane

Let us consider a more complex example where a solute S is transported
through a protein pore (and hence saturable) and it catalytically trans-
formed into product S3. Instead of using Fick’s law we must consider
using a saturable Michaelis-Menten like rate law. Let us assume that the
concentration of protein pores on the membrane is given by:

J— ne
‘T
where 7, is the number of protein pores, A the area of the membrane and
e the concentration in moles of pores per unit area. The rate of catalysis
will be proportional to the concentration of pores on the membrane. If we
invoke a saturable rate law we can write that the rate of transformation in
moles (amount) per unit area per unit time (the flux J4) is given by:

Jqg=e
1+ S1/Km + S2/Km2

where kf and k, are the forward and reverse rate constants such that
kr/kr = Keq. Given the last relation we can write:

S 1— SZ/ Keq
S1/Km1 + S2/Km2

JA=ekf1+

Given the units for J4, e and the rate term, the units for k # are mol JER

The total flux across the membrane, J4 is given as before:

J =AJy

The total flux will equal the following:
dn 1 . d np

dr T dr

This means that the rate of change of concentration of S; and S, is given
by:
dS1 J dsS> J

WSV a T

8.3. CATALYTIC REACTION ACROSS A MEMBRANE 233

M Sh

Vi Vs

Figure 8.2 Two compartment model with volumes V7 and V,. S7 and
S> move through saturable protein pores in the membrane and undergo
catalytic transformation.

Name Symbols Units

Net Flux J mol ¢!
Flux J4 mol [2 ¢!
Area A 12

Volume \" 13
Concentration S mol /73
Transporter e mol [~2
Rate Constant kz mol /3 71

Table 8.1 Units for transporter model. [represents length; S reactant; ¢
time.

Figure 8.1 shows a Jarnac script that models the transporter model. A
few things are worth pointing out. By default, Jarnac solves all differen-
tial equations in terms of amounts per unit time. This means there is not
need to explicitly adjust volume sizes in any equations. Instead we de-
fine the compartments we need using the vol keyword and then indicate
which species is in which compartment. All volume adjustments are then
automatic. Jarnac stores levels of species as amounts and converts to con-
centrations on a need to basis, eg when a concentration is specified in a
rate law. This make is quite straight forward to build multicompartment
models using Jarnac.

Figure 8.3 shows the results of the simulation. In this case the volume
ration is 1 to 10. Notice how the concentration of S; starts at 21 but ends

234 CHAPTER 8. MULTICOMPARTMENTAL SYSTEM

up at 1 in the first compartment and 2 in the second compartment. We
can check that we’ve not lost any mass by summing up the mass in each
compartment. The total mass at time zero is 21 x 1 = 21. The total mass
at the end of the runis: 1 x 1 42 x 10 = 21. Therefore the mass has been
conserved.

p = defn cell
vol V1, V2;
var S1 in V1, S2 in V2;

S1 -> S2; Axkx(S1-S2/Keq)/(1 + S1/Kml + S2/Km2);
end;

p-V1 =1; p.V2 = 10;

‘o ‘o ‘o
§:>UJ
[y

1

I =
O o

-

1

m = p.sim.eval (0, 200, 100);
graph (m);

println "Total Mass = ", p.Sl*p.V1l + p.S2x*p.V2;

Listing 8.1 Script for Multicompartment model with transporter.

8.4 Concentrating Cascade

The final example uses three compartments of decreasing volume. It shows
how smaller volumes result in higher and high concentrations. The equi-
librium constants for the transport across each membrane is quite high.

p = defn cell
vol V1, V2, V3;
var S1 in V1, S2 in V2, S3 in V3;

8.4. CONCENTRATING CASCADE 235
S$1 S2
257
20
c \
o 4
"43-157
£]
] 4
g10
S]
o \
5-
1 J—
0 ‘ 20 ‘ 40 ‘ 60 ‘ 80 ‘ 100 ‘ 120 ‘ 140 ‘ 160 ‘ 180 ‘ 200
Time
Figure 8.3 Simulation results of a membrane transporter
S1 -> S2; Axk1x(S1-S2/Keq)/(1 + S1/Kml + S2/Km2) ;
S2 -> S3; Axk2x(S52-S3/Keq)/(1 + S2/Kml + S3/Km2) ;
end;
p.V1 = 100;
p.-V2 = 10;
p.V2 = 1;
p.-S1 = 10;

S

121

Va | V3

S2<-

Figure 8.4 Two compartment model with volumes V7 and V,. S; and
S»> move through saturable protein pores in the membrane and undergo

catalytic transformation.

236 CHAPTER 8. MULTICOMPARTMENTAL SYSTEM

1; p.k1 = 800; p.k2 = 20;
= 0.5; p.Km2 = 0.5;

LA
.Km1
.Keq = 50;

‘o 'O ‘o
Q

m = p.sim.eval (0, 1000, 200);
graph (m);

println "Total Mass = ", p.S1*p.V1l + p.S2*p.V2 + p.S3%p.V3;

Listing 8.2 Script for Multicompartment model with three compart-
ments, each compartment getting progressively smaller.

S1 S2 83
1000 5
E S
E ——
800 //
R
.2 E /
+ 600 /
o 7
© E
=) =
c B
9 E
g 4007
(=] =
o =
200
E \\\
= —
0 b T T T e
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 8.5 Simulation results of a membrane transporter

Further Reading

There are surprisingly few books on compartmental analysis in systems
biology. Most books focus on pharmokinetic modeling and its takes some
effort to translate the pharmokinetic formalism into a systems biology one.
I list three books here, probably the most useful is the one by Neame and
Richards which can be obtained with relative ease on the second-hand mar-

8.4. CONCENTRATING CASCADE 237

ket.

1. Atkins, GL (1969), Multicompartment models for biological sys-
tems, Methuen London, SBN: 416 13820 9 (SBN is not a typo)

2. Jacquez, JA (1985). Compartmental analysis in biology and medicine.
Ann Arbor: University of Michigan Press. The third edition (1996)
is available from http://www.biomedware . comor directly from http:
//tinyurl.com/msh54u6.

3. Neame, KD and Richards TG (1972). Elementary kinetics of mem-
brane carrier transport. New York: Wiley. ISBN: 0-470-63078-7

http://www.biomedware.com
http://tinyurl.com/msh54u6
http://tinyurl.com/msh54u6

238 CHAPTER 8. MULTICOMPARTMENTAL SYSTEM

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft 0.92,
www.sys-bio.org

Fitting Models

9.1 Introduction

Let us set up an experiment in the lab where a compound S; is known
to spontaneously react to form S, which in turn is converted into a stable
compound S3. The experiment is started by adding an initial amount of S
to the reaction vessel. A stop clock is started and the reactions are followed
by periodically taking a sample and measuring the levels of S1, S2 and S3.
The graph shown in Figure 9.1 shows a typical time series from such an
experiment. Note that the data don’t follow a smooth curve, this is because
of errors made in the measurements. A proposed model for this system
might be:

k k
S; 38, 38,

where we hypothesize that both reactions follow simple first-order kinet-

239

240 CHAPTER 9. FITTING MODELS

ics. This means we can write down the model equations as:

ds,

i R

dt 191

ds,

222 _ Sy —kaS 9.1
dt 191 202 ()
dSs

23 kS

dt 202

| L
209 o . ' .
° ° ® []
° L
- ° []
L J
]]
10 e
1 ° °
L J
o
] e o ¢ .
o ° : ° ® e e
i i °
o | o ° ® o @
0 HH‘-HHiHH‘HHHH‘HHHH‘HHHH‘HHHH‘H.HH=\‘HHH"\H=H\3‘H\ \H\!rﬂ_ﬂ,
0 1 2 3 4 5 6 7 8 9 10

Time

Figure 9.1 Results from a experiment that measures the concentrations of
S1., 55 and S3 in time.

The question to consider in this chapter is, given a time series such as the
one shown in Figure 9.1 and a proposed model such as 9.1:

1. Can we determine the parameters in the model from the experimen-
tal data, e.g. k1 and k»?

2. Does the model reasonably represent the known experimental data,
that is, is the model a good fit?

3. What confidence do we have in the fitted parameters?

9.1. INTRODUCTION 241

Fitting a model to experimental data is useful for a number of reasons but
one obvious application is that we could use the model to make useful
predictions. For example, if we started with a different amount of S; how
long would it take for S3 to reach a given concentration?

A brute force way to fit a model to some data is to run a simulation of
the model many times with random values for the parameters until we find
a set of parameters that gives us simulation data that matches the exper-
imental time series curves. One problem with this approach is that we
could spend a lot of time coming up with random values for parameters
in the hope that at least one set of parameters will match the experimental
data. This however is unlikely. Instead, special search algorithms have
been devised, called optimization algorithms, that search for the best set of
parameters in a systematic way.

Fitting a model means adjusting the parameters of the model un-
til the behavior of the model matches some known experimental
data.

To understand how the fitting process works consider a simple model:
k
S = Sy

Figure 9.2 shows both a solid curve representing a simulation of the model
and four experimental data points for the concentration of S;. The first
data point at time zero represents the initial concentration of S;. Measure-
ments were collected at time points 1, 2, and 3. The e; terms represent the
difference between the experimental data point and the simulation curve.
Fitting is the process where we attempt to adjust the parameters of the
model (k; in this case), such that the difference between the simulation
curve and the data points is minimized.

Let us indicate the experimental data points using the symbols, x;, y;. We
will assume there are N data points. We will indicate the model using the
symbol f(xj; p1...pm) where p; is the ith parameter in the model. That
is for a given set of parameters and time point, x;, the function, f, will

242 CHAPTER 9. FITTING MODELS

10 T T T T I I I
s\ | i
N
ol N\ l
“ Al \+— Fitted Curve i
€2 lt \\
2 ° S~ -
0 l l l l l l

Figure 9.2 Model curve and data plotted on same graph. The solid line
is the simulated model, the points represent experimental data. The exper-
imental data has errors, e;, such that they do not match the model curve
exactly. Data fitting attempts to minimize the e; terms.

return the corresponding model y; value. If the model is a set of differential
equations, we would run a simulation in order to obtain the value of y; at
x;. The fitting procedure will attempt to minimize the difference between
the model f and the data points, that is minimize:

yi— f(Xisp1...pm)

However the difference between a data point and the model could be posi-
tive or negative depending on the error in the data point, therefore we take
the square of the difference to make the term positive:

(i — f(xi:p1-..pm))?

This difference however only corresponds to one data point and we should
be considering all data points when we’re trying to fit the model. Therefore
we will form the sum of all the differences and attempt to minimize the

9.1. INTRODUCTION 243

sum, that is:

N
Y 0i— fispi-..pm)

i=1

We can take one step further and reason that those data points that are
more uncertain should contribute less to the sum than those data points
which have been more precisely measured. We therefore weight each dif-
ference by the standard deviation, o, that corresponds to that data point
(this assumes that we have some measure of uncertainty, if we don’t we
set the weight to one):

N

, vi— fip1- . pm)’
N

i=1

Sometimes the above equation is also expressed in the following equivalent

form that emphasizes the weighing in terms of the variance, o'2:

N

2= 0 SO o1)

i=1 1

The equation is called the weighted chi-squared sums of squares and can
vary between zero and infinity. If the model is a set of differential equa-
tions, the f function is a list of data data points from a simulation run.
For example, from the previous model let us set the parameter, k1 to -0.95.
Table 9.1 shows an example of computing the chi-square given some data
points and results from a model run.

An important variant on the chi-squared is the reduced chi-squared which
is used when looking at the quality of the fit and estimating the confidence
in the estimated parameter. We will return to this later.

N
1 1
Yiewed = 37— p 2o =3 0 = S pr- pm))

i=1"1

where N is the number of data points and P the number of parameters to
be fitted in the model.

244 CHAPTER 9. FITTING MODELS

Time Data Point Point from Model Difference Difference Squared

0 10 10 0 0

0.5 7.9 6.2 -1.68 2.8

1 2.1 3.87 1,77 3.12

2 0.5 1.5 1 1

3 0.6 0.58 -0.02 0.00046

Table 9.1 Calculating chi-squared. Assume we have no variances the data
points, therefore weighting is one. y? is the sum of the right most column
and equals 6.9. The reduced chi-squared, szeduced’ is6.9/(5/1) = 1.3.

9.2 Optimization Algorithms

Fitting a model to data is an iterative process. It involves making an ini-
tial guess to the parameters, p;, computing the y, value and using a rule
that adjusts the parameter values such that the y? is reduced in the next
iteration. This procedure is repeated my times until the y? can no longer
be reduced, at which point we have probably fitted the data to the model
and the parameter values should be able to reproduce the experimental data
when plugged into the model.

One way to imagine this process is to consider a two parameter system
where the y2 describes a surface. Figure 9.3 shows such a surface, also
called a fitness landscape. The z-axis is a measure of the y? and the x
and y axes are the two parameters. As the two parameters are varied the
x? changes, sometimes to high values, sometimes to low values. The low
values are the ones we seek, ideally the lowest possible y5 value, called the
global minimum. We can see that the surface is quite complicated with a
number of hills and valleys. This is often the case when fitting a any model
of moderate complexity.

To start the optimization we select, possibly at random, values for the two
parameters. Let us assume that we started the optimization at the top of the
tallest hill. What we seek is the lowest valley on the surface. An obvious
strategy to find a valley is to move down hill until we reach the lowest
point. However if we did this we wouldn’t reach the lowest point but

9.2. OPTIMIZATION ALGORITHMS 245

an intermediate low point called a local minimum (most likely point M).
However if we started on the near side of the second peak and moved down
the hill we would reach the deepest or global minimum at M,. Depending
on how complex the surface, it can be difficult to find the global minimum.
A great variety of approaches have therefore been devised to try to find the
global minimum on a fitness landscape. We will describe four common
approaches to finding minima on a fitness landscape. To make the notation
more compaxt we will refer to y? using the symbol €.

Local Minima

Figure 9.3 Example of a fitness landscape showing multiple minima (M,
and M}) and a global minimum at M.. The vertical axis represents x>
and the x and y axes the parameters. THe plot shows how y? changes for
different parameter values. (Out of interest the function used to plot the
surface was: 3(1—x)? exp(—x2—(y+1)?)—10(x/5—x3—y>) exp(—x2—
y?) —1/3 exp(=(x + 1)> — y?)

246 CHAPTER 9. FITTING MODELS

Levenburg-Marquardt

In the last section we mentioned an approach that involved moving down
the fitness landscape until we reach the minimum. One problem with this
method is that in steep sections of the landscape we will tend to move
quickly while in more shallow areas we will tend to move slowly. This can
be a cause of some problems. If we move too quickly we run the risk of
missing the bottom of the valley and overshooting our target (Figure 9.4).
On the other hand if we move too slowly when we are near the bottom of
the valley we might take too long to reach our target.

Global Minimum

Figure 9.4 Overshoot when using gradient decent. Circles represent
points reached during gradient decent. The step size is too big to notice
the deep valley and misses it completely.

To help mitigate these potential issues the Levenburg-Marquardt method
employs a weighted mixture between two types of searches [70, 85]. The
first is a gradient search, and the other is the approximation of the error
surface near the minimum as a quadratic function of the parameters. Near
the minimum the function can be approximated using Taylor series with
two terms, that is:

d2f

dt?

d
1) = fex) + 5554 oy
hence we can approximate the surface near the minimum using a quadratic
function. In gradient descent, the approach is to descend down the error
surface in a direction opposite (a positive gradient would take us up hill)

9.2. OPTIMIZATION ALGORITHMS 247

to the local gradient, i.e. the direction of maximum change. The step size
is set to be a constant. For the (k + 1) iteration, p; is changed according
to

pFt! =p* — ud 9.2)
where! the gradient d = g—;, and p is the step size.

As we get closer to the minimum we can approximate the surface using a
quadratic function in the parameters. To obtain this approximation we can
use the Taylor series to expand about pg as follows, where §p = p — po:

1
6=60+8pd+§5pTH5p 9.3)

where d; = de/dp;. H is called the Hessian and has elements defined by:

0%e

~ Opip;

and describes the curvature of the surface. The minimum of the surface is
now found by differentiating expression 9.3 with respect to §p, and setting
the result to zero. From this we obtain the parameter value, in a single step,
as

pFtl =pF—H'd. (9.4)

The basic approach for the Levenberg-Marquardt method is to merge gra-
dient descent (9.2) with the quadratic approximation (9.4), such that when
the error surface is very steep, the gradient descent is chosen. When the
surface can be approximated by a quadratic, (9.4) is used which will tend
to move rapidly to the target optimum. The combined method can be de-
scribed by equation 9.5 where the value of u can be used to move from
one strategy to the other:

1 —1
pktl =pk - (H + I;) d. 9.5)

IBold font lower case, e.g X represents a column vector, and bold font upper case, eg. X
represents a matrix

248 CHAPTER 9. FITTING MODELS

This, if ;& becomes large, the equation approximates to the quadratic func-
tion approximation (9.4). If however u becomes small, then the second
term in the inverted expression dominates such that:

pF 1~ pf — pd

which is the gradient decent method (9.2). One last modification is nec-
essary before we have the full Levenberg-Marquardt method. When using
gradient decent we are not using the curvature, H. Marquardt suggested
that some benefit could be obtained by incorporating the curvature during
gradient decent. This makes the step size no longer constant since the cur-
vature changes and hence the algorithm can take longer steps in regions
where the gradient is less (such as in a long shallow valley), which is ex-
actly what we would like. In addition the method is less likely to overshoot
the minimum. The final Levenberg-Marquardt equation is therefore given

by:
1 _1
pktt =pk — (H + diag(H);) d. (9.6)

The algorithm starts with using gradient descent, and if the error can be re-
duced, which means that it is successful, it decreases the step size u, hence
the quadratic approximation takes over. This process is continued until the
change in the € reduces to a very small number. The Levenberg-Marquardt
method has proved to be a very successful approach. It’s main drawback
is that the method tends to find the nearest minimum which could easily
be a local minimum. The method can therefore be sensitive to starting
conditions. For the surface shown in Figure 9.3, if we start on the highest
hill the Levenberg-Marquardt will most likely find the nearest minimum,
M, which is a local minimum not the global minimum which is what we
would like to find. The Levenberg-Marquardt is better suited when com-
bined with other methods. If a good starting point can be found then the
Levenberg-Marquardt will rapidly find the minimum.

There are a number of freely available open source implementations of
the Levenburg-Marquardt method. There are two GPL licensed solvers,
GSL? and levmar’. To avoid the distribution restriction of the GPL licence

Zhttp://www.gnu.org/software/gsl/
3http://users.ics.forth.gr/~lourakis/levmar/

http://www.gnu.org/software/gsl/
http://users.ics.forth.gr/~lourakis/levmar/

9.2. OPTIMIZATION ALGORITHMS 249

the Imfit library* is highly recommend (licensed under FreeBSD License).
The author has used this library with great success. The author also has
free implementations in Pascal and C# which are available upon request.
There are a variety of Java versions available on the Web, a search using
Levenberg-Marquardt java will located many of them. Scripting languages
such a R, Python and Matlab also support implementations of Levenberg-
Marquardt.

Simplex or Nelder and Mead

The Levenberg-Marquardt method requires the calculation of derivatives
during the iteration, this can be slow and not always easy. The follow-
ing and remaining methods do not require derivatives which means they
are easier to implement. The simplex method, as described by Nelder-
Mead [79], is a robust search method (that is it is generally tolerant of
noisy data), in which the objective function, in our case €, is computed at
several test points, and the test point with the highest value for ¢, is re-
placed by another point which has a lower value for €. The replacement
of the worst point involves some rules (Figure 9.5). In a parameter space
of P dimensions, an P + 1 dimensional geometrical object is created,
called as the simplex, with its vertices, initialized to some starting values.
The P + 1 vertices, of the simplex are the points at which the objective
function is evaluated. The simplex then evolves by the following steps:

e The simplex reflects the worst point through the opposite face, to a
new point.

o If the reflection above results in a better point, i.e. lower error, it is
further stretched in that direction (expansion).

e A contraction of the worst point towards the opposite face of the
simplex.

e A contraction along all the faces towards the best point.

“http://joachimwuttke.de/Imfit/

http://joachimwuttke.de/lmfit/

250 CHAPTER 9. FITTING MODELS

Reflection Expansion
Shrinking Contraction

Figure 9.5 In the Nelder and Mead Algorithm, a simplex changes its shape
according to four rules, as it does so it makes its way across the fitness
landscape.

By successively evolving according to the above steps, the simplex slowly
makes its way along the error surface (See https://www.youtube.com/
watch?v=HUqLxHfxWqU for an animated example). The shape of the sim-
plex adapts to the landscape, by stretching and contracting. The simplex
method can be quite successful unless the initial starting point is a very
poor guess. The above steps can be made to converge, either when the
simplex size converges to a very small region, or when there is no signifi-
cant improvement in the error from one iteration to the next.

Implementations of the simplex algorithm are available from a number
of sources. The GPL GSL library http://www.gnu.org/software/
gsl/ has an implementation. A unrestricted licence version is available
fromhttp://www.mikehutt.com/neldermead.html and the author has
a C# version available upon request. One advantage of the simplex method
is that it is not too difficult to implement (unlike the Levenberg-Marquardt
algorithm). Most scripting languages, including Scipy for Python® and
Java has implementations available.

Shttp://docs.scipy. org/doc/scipy/reference/tutorial/optimize.html

https://www.youtube.com/watch?v=HUqLxHfxWqU
https://www.youtube.com/watch?v=HUqLxHfxWqU
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.mikehutt.com/neldermead.html
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

9.2. OPTIMIZATION ALGORITHMS 251

Simulated Annealing

The simulated annealing method, derives its name from thermal physics,
where the minimization of e, is equivalent to the way a system (such as a
metal) reaches its lower state as it is slowly cooled [54]. At a given temper-
ature, the atoms of the metal collide with each other, so that the energy of
the system is continually being redistributed. As the temperature is slowly
reduced, the atoms begin to form a crystalline structure and eventually
reach the minimum energy state. The important point is that the metal has
to be cooled slowly, or else, pockets, where the metal is in a higher energy
state, than its neighboring regions, can form. For optimization problems,
the algorithm works in the following way: Given an initial state i, which
in our case would be a set of parameters, the system could jump to another
state i + 1, with the Boltzmann probability

(i —€it1)

exp T ,

9.7)
where T is the temperature. For example if €; 11 is lower than ¢; then the
expression will always be greater than one, in this case we will always ac-
cept the new solution. However if the new state is bigger then the original
then the probability of accepting the new state is less than one and it is pos-
sible to actually accept the worse state, effectively we go up hill. Going up
hill seems to be counterproductive but it allows the algorithm to potentially
jump out from local minima, and eventually find the global minimum. The
higher the temperature the more likely the algorithm will move up a hill,
therefore the temperature is slowly lowered so that the chance of going up
hill reduces.

At a given temperature, the system must be given enough time to sample all
the configurations which are accessible using the probability distribution
given above. There is no simple way to design a temperature scheduling
(temperature as a function of time/iterations), several methods exist and
the one that works best depends on the problem at hand. One way way
is to follow the algorithm as described in [70, 85] in which the authors
consider an adaptation of the simplex method. Our own experience with
this approach has been successful.

The basic simulated annealing algorithm is described in the code below:

252 CHAPTER 9. FITTING MODELS

1. Initialize parameter values, p
Initialize the temperature, T
Calculate the chi-squared, ¢;, at the
current parameter values p;
Make small random changes, Ap to p;
Set pi+1 =pi + Ap
Calculate the new chi-squared, €41
Calculate Ae =€j4+1 — €
If Ae <0 then accept the new state
If Ae >0 then
Generate uniform random number, u
If u <e 49T then
accept state
else
Restore previous state, p;
20. Reduce the temperature, T =T —¢r
21. If T <0 or exceeded Max Iterations then
exit
21. Goto to Step 3.

w N

© 00 N O O

The GPL GSL library® has an implementation of simulated annealing and
has been used successfully by the author. An unrestricted licensed version
in C# is available at’ and a C version at®.

Genetic Algorithm

Genetic Algorithms (GA) have been very successful used to solve opti-
mization problems. GA’s are special cases of evolutionary algorithms.
They are motivated by natural biological processes such as selection, cross
over and mutation. The Schema theorem of Holland [38], addresses these
intuitive notions, and proves that these operations serve to increase the fit-
ness of a population. In our case we will consider real value coded GA’s,
where the “gene” is a string of kinetic parameters, which are all real and
nonnegative. We start with a random population of individuals where an

Shttp://www.gnu.org/software/gsl/
"http://www.codeproject.com/Articles/13789/Simulated-Annealing-Example-in-C
8 http://www.cs.sunysb.edu/"skiena/algorist/book/programs/

http://www.gnu.org/software/gsl/
http://www.codeproject.com/Articles/13789/Simulated-Annealing-Example-in-C
http://www.cs.sunysb.edu/~skiena/algorist/book/programs/

9.2. OPTIMIZATION ALGORITHMS 253

individual is a model with a set of parameters. The fitness of an individual
is measured by it’s chi-squared value. We monitor €, which decreases as
a function of the generation number. General considerations show that the
function of crossover, whereby two parent genes, exchange, genetic mate-
rial is important to preserve the parents’ best qualities up into successive
generations. They also serve to spread good mutations. This is all due
to the fact that only the fittest members are crossed over, and hence their
progeny survive into the future generations. There are many variations on
what operations occur between each generation, but the following steps
could be considered typical:

e Selection: There are various way to rank the fitness of individuals
in the population, including elitism, tournament selection or roulette
wheel selection. In tournament selection random pairs are made to
play a tournament and the winner is decided based on which is fitter.
This ensures that even some bad individuals can get selected into the
next generation and helps prevent premature convergence. Elitism
is where the top 20% or more of the fittest individuals are passed on
to the next generation. Roulette selection is where the probability of
picking out an individual from the population is based on the fitness
of the individual. One or more of these strategies can be used to pick
the next generation.

e Crossover: The selected parents are crossed over [42], using an
arithmetic mean defined in the following way: Assuming we rep-
resent the parents as:

p1=(pi.pi.pi...) and pa=(py.p3 p3....)

where the pij term is related to the j® parameter in the i™ parent.
The cross over between p! and p? will generate two children 81, B2
such that:
1 =Aipy + (1= 2i)p5. 98)
By =Aipy + (1—2i)p)
where A is a uniform random number between -0.5 and 1.5. Nor-
mally arithmetic cross-over maintains the convexity property, but

254

CHAPTER 9. FITTING MODELS

the rule defined above, allows a larger region of parameter space to
be explored, since the new points could lie outside the line joining
the parents.

Mutation: For a random number of individuals, one parameter p is
randomly selected and changed according to

i

=z p .. 9.9)

where, z = random [0, 1], is uniformly distributes, and 6}, is the

maximum possible value of the i component of the parameter set.

. . Select Fitness: Tournament Selection
Initial Population
i — | Pick a Random Pair

Select Fittest i
Pick Best of Pair | — Best PairTo .
Next Generation

Reached i
Stoppmg Criteria?
Yes Any More
Pairs to Pick?
Reproduce l No
and Mutate '

Figure 9.6 Basic genetic algorithm flowchart though many variants exists.
There are a number of methods for selecting the fittest individuals, for
example tournament selection, roulette selection or elitism.

An example scheme is displayed in Figure 9.6. The operations of cross-
over and mutation occur with certain probabilities, which should be ad-
justable. However the mutation rate is generally a small number < 0.05.
Mutations allow the system to explore new regions, whereas crossovers
spread these mutations over the population, thereby transferring informa-
tion about interesting regions in the fitness landscape. Hence if the mu-
tation rate is very high, large regions will be explored, but the members

9.2. OPTIMIZATION ALGORITHMS 255

may not survive up into the next generation, since the search is much too
exploratory, and not enough information about the landscape has been ex-
ploited by the cross-overs. The fitness of the best member in each genera-
tion is monitored, and if it turns out that there is little improvement in the
fitness, the computation is stopped, and the resulting optimized parameters
are examined.

Combining Global and Local search

Some optimization methods are considered local whereas other global.
The Levenberg-Marquardt is considered a local method because given a
starting point it can usually only find the nearest minimum, hence its search
is local. Other methods such as genetic algorithms or simulated annealing
are consider global because they tend to search across the fitness land-
scape, sampling many regions.

Combining a local search within a global search algorithm, is a very attrac-
tive possibility. The global search provides the initial seed point, which a
local search would use to make a further optimization. For example, for
each generation, we take the best two members and use them as initial
conditions, for a simplex search. The resulting fitter members are replaced
back into the population. Hence in every generation, two local searches
are performed.

We will now discuss a typical test case that compares the different opti-
mizers. The model we will consider is a simple oscillator, which arises
from positive feedback [41]. The model was simulated and random noise
was added to the time series to produce noisy data. Four parameters were
fitted to the data for the same initial guesses for the parameters, for each of
the optimizers. The time taken to reach a good fit was compared including
the number of simulations, and the value of €. Levenberg-Marquardt and
simplex, were unable to find a fit with the same initial conditions. The
data and the fitted curve (bold lines) for the best set of fitted parameters
obtained, by using the hybrid optimizer, are displayed in Figure 9.7.

One can see that the GA has the fewest simulations, whereas the simulated
annealing takes a lot longer. The hybrid search led to the best optimization,
with a modest time, and although the number of simulations are quite large,

256 CHAPTER 9. FITTING MODELS

Time series for data/simulation
45 ‘ ‘ ‘

35¢ 1\ 1

2.5F ‘h‘]

Concentration

Time s

Figure 9.7 A plot comparing the simulation (bold lines), with the data
(thin lines), for the concentration time series, for two metabolites for the
oscillating model [41].

they are still smaller than the simulated annealing algorithm.

9.3 Is the Model a Good Fit?

If the optimization has been successful, the next question that arises is
whether the fit is good or not? There are a number of ways to answer this
question which we will cover in the following sections. One possible way
is to compare how the data fits two different models. One could reason
that of the two models, the model that results in the lowest y? is the better
fit. However this is not necessarily the case. Imagine a model, m11, that has
ten parameters to fit and another model, m,, that has only two parameters
to fit. Let us assume that the y2 for m; was 0.5 and the y? for m, was 0.8.
At first glance it would seem that m1; is the better fit because it has a lower

9.4. ESTIMATING CONFIDENCE INTERVALS

257

Optimizer | Iterations | Simulation time | Simulations €

GA 500 2 min 4980 3.94
SAsimplex 56 8 min 24959 0.152
GAsimplex 29 4 min 11432 0.104

Table 9.2 Performance comparison for different global optimizers.

x2. The danger here is that because 7 has ten parameters to adjust, there
is a lot of freedom such that the model solution could go through every
experimental data point resulting in a lower y2. This is termed overfitting.

It is much better to compare the reduced y? values since this takes into
account the number of parameters to fit. Let us assume that we had ten
points to fit the model to. The reduced y2 for m; will be 0.5/(10 - 9) = 0.5,
while the reduced y? for m, will be 0.8/(10 — 2) = 0.1. Now we can see
that after taking into account the number of parameters in each fit, m, has
the lower y? and therefore we conclude that it is 71, that is the better fit to
the experimental data.

This is a simple check on the plausibility of a given model, simply compare
the reduced chi-squared. We will return to other indicators of a bad fir in a
model in the following sections.

9.4 Estimating Confidence Intervals

Fitting a model to a set of data generates estimates for the parameters.
However since there will inevitably be errors in the experimental data this
error will propagate into the parameter estimates. There will therefore be
some uncertainty in the values for the parameters. For example, it is im-
portant to know whether a fitted K, with a value of 5.0 has an uncertainty
of £0.2 or £4.8. Knowing these uncertainties becomes important because
they influence in turn uncertainties in the predictions made by the model.

We can describe the uncertainty using confidence limits, that is the likeli-
hood for a parameter value to be found within a given confidence limit, for
example 95% of the time. Intuitively this means if one were to repeat the

258 CHAPTER 9. FITTING MODELS

same experiment many times and each time fitted the experimental data to
the model, we would find that 95% of the time the fitted parameters would
lie within the indicated range.

The uncertainty in a parameter p, that is the variance Ug, can be estimated

by propagating how each individual data point, x; influences the parameter
through the variance (oiz) of the data point [9]:

ap)2

2 2

02 = o | — (9.10)
F-x | (3

By evaluating the derivative, dp/dx;, we find that (Details in [9], page 154)

the covariance matrix can be obtained from the inverse of the Hessian, H:

Cov=H"!

From which an estimate for the standard deviation in the parameters can
be found on the main diagonal of the covariance matrix:

Op = 4 (H) 9.11)

For a confidence level of 95%, it can be shown that the quoted limits po £
op, are given by:

Spi = il.96\/((H)_1)iiﬁ (9.12)

If should be strongly pointed that the estimates given by equation 9.11 is
an approximation and in fact studies indicate that they generally underesti-
mate the actual confidence limits. The reason for the approximation is due
to a number of assumptions made, in particular, we assumed that the exper-
imental noise is normally distributed and that the experimentally measured
data points must be independent observations. In addition we assume that
the number of data points collected is sufficient to give a good random
sampling of the uncertainties in the data and that the linear approximation
(9.10) when deriving 9.11 holds true. For very nonlinear models and where
this is unlikely to be the case. The likelihood therefore of inaccuracies in
the uncertainty estimates is therefore quite likely.

9.4. ESTIMATING CONFIDENCE INTERVALS 259

Finally, we have said very little about the covariances in the Hessian ma-
trix H. The confidence limits are derived from the main diagonal elements
of H. The off diagonal contain information on the covariances, that is how
a change in one parameter can influence the change in another parameter,
that is the parameter estimates are not independent of each other. What
this means is that parameters are correlated which in turn usually means
there is insufficient experimental data (or variety of measurements)to sep-
arate the two parameters and identify them individually. We will return to
this important topic in another section where we will shows examples of
parameter correlation.

An alternative and possibly more trustworthy way to generate confidence
limits and one that avoids many of the the problems highlighted above is
the use of Monte Carlo simulations [85, 89, 94], which we will now turn
to in the following section.

Determining Confidence Intervals from Monte Carlo Simulations

In the last section a description was given on how to estimate the 95%
confidence limits on a set of fitted parameters. Intuitively, if we were to
repeat the same experiment many times and each time fitted the experi-
mental data to the model we would find that, 95% of the time, the fitted
parameters would lie within the indicated range.

Unfortunately the approach used to estimate these confidence limits is rid-
dled with assumptions which may or may not be defensible in many cases.
An alternative approach is therefore sought. Going back to the intuitive
explanation, if we could repeat the experiment many times and fit the data
many times we could get many estimates for the parameters, each estimate
slightly different due to errors in the experimental data. From the sample
of fitted parameters we could then compute a standard deviation and thus
obtain a confidence limit (Figure 9.8). Obviously repeating the experiment
many times is just not practical but by making two reasonable assumptions
we could do the same thing but by carrying out only one real experiment.

The two assumptions we wish to make are:

1. When we repeat an experiment, the underlying biology remains the

260 CHAPTER 9. FITTING MODELS

same, that is we are measuring the same thing again;

2. What ever errors there are in our measurements, the same kind of
error manifests itself each time we repeat the experiment, techni-
cally the probability distribution for the errors remains the same,
this could be normal, Poisson, or what ever.

If these two assumptions hold then there is nothing stopping us from creat-
ing synthetic experimental data sets if we knew the probability distribution
for the errors.

The System Experimental Best Fit
Under Study Data Sets Parameters
a) b) > o)

v 0 = Po

]
O O
\
© O
N _

N
Y

’yy

.bU O

]

T T
BN w

Y
S
8

Uncertainties in
Measurements

Figure 9.8 a) In the real world we assume our system has a set of “true”
parameter values. b) We do experiments which give us experimental data;
¢) which we use to fit our model to obtain estimates for the parameters. Be-
cause each experiment is slightly different due to measurement uncertainty,
we will, in turn, generate a set of different but similar fitted parameters.

We need to make one further assertion before we can continue. Let us
assume that that the parameter estimates that we obtain from the optimiza-

9.4. ESTIMATING CONFIDENCE INTERVALS 261

tion process are close to the true parameter values. That is let us assume
that pre is not far from the out fitted data, pg. The core concept we will
use is that we will generate, using a bootstrap (see next section), new syn-
thetic data sets. The bootstrap will ensure that the new data sets have the
same error distribution as the data we collected from the real and only ex-
periment that was done. Each synthetic data set will e fitted to the model,
from which we will obtain multiple estimates for the parameters. Once we
have a large sample of estimated parameters we can make statements on
the uncertainty of our parameter estimates (Figure 9.9). In particular, ap-
proximate confidence interval for the parameters can be obtained by using
the § and 1-5 sample quantiles from the Monte Carlo estimators of the
parameters.

If the experimental uncertainties surrounding measured data are not known,
then a proxy can be obtained by relying on the residuals (a discussion
residuals is presented in section 9.6) that were produced as a result of the
parameter estimation procedure. This is a common approach to take.

Bootstrap

Bootstrapping is a method to infer the statistics of a population by sam-
pling from a sample of the population [28, 85]. It is a means of gaining
information about a population when the population itself is not available.
The key assumption in a bootstrap is that the sample contains enough infor-
mation to reconstruct details about the population (An example of a simple
bootstrap is given in the appendix).

In practice the bootstrap works as follows. Let us assume we have a sam-
ple of observations of size N from our population. We now generate new
samples by selecting N random values with replacement. Since we are
sampling with replacement, some of the original observations may appear
more than once in the new sample sets. We repeat the sampling process un-
til the desired number of “simulated data sets” are generated. The question
is what do we sample? One possibility are the residuals that are generated
from the initial fit. The residuals are the difference between the fitted data
value and the corresponding experimental value, that is:

ri = (y;) observed — (y;) predicted

262 CHAPTER 9. FITTING MODELS

Carry Out One Generate Synthetic Best Fit
Experiment Data Sets Parameters
a) b) Q) d) e)
I:)O p1
A
D, P,
i
D p
'\
Prrue DO > P 0 2 3
> D3 P,
N
Dy Ps
Nop_ b_

The System Fit Model Bootstrap Fit Model
Under Study

Figure 9.9 b) Generate a set of measurements from one experiment; c)
Fit the data to the model to generate parameter estimates, pg; d) Using a
Bootstrap to generate synthetic data sets; e) Fit the synthetic data sets to
the model and produce a sample of parameter estimate; Use the sample of
parameter estimate to gauge parameter uncertainty.

To generate a synthetic data set, we will sample the residuals and add
them to the predicted y; values. For example assume that after our ini-
tial fit of the experimental data to our model the residuals are found to be:
(0.1,—-0.5,0.2). To sample this set we pick at random three values from
the set, each time we pick a value we also return it to the set (replacement).
For example, the following sets are possible samples:

(—0.5,0.2,0.2), (—0.5,0.1,0.2), (0.2,0.1,0.1), (—0.5, 0.1, —0.5)

Note that due to replacement it is possible to pick the same residual more
than once. Once we have our sample residual sets we can now generate
the synthetic data sets by adding the sets to the fitted data. That is:

(yi) synthetic = (y;) predicted + r;

It is prudent to generate at least 500 to 1000 new synthetic data set in
this way. We now take each synthetic data set in turn and fit the data to

9.5. CASE STUDIES 263

the model to generate a ‘synthetic’ estimate for the parameters. We will
thus generate 500 to 1000 estimates for the model parameters. Using these
parameter we can calculate different statistics, for example the standard
deviation for each parameter. However, one thing that will be potentially
different from the estimated statistics using the Hessian is that whereas the
confidence limits from the Hessian will be symmetric, there is not guaran-
tee that the distribution of parameter values will be symmetric. As a result
it is best to compute confidence limits using percentile values, although
other approaches are possible [103]. For example we could generate 95.5"
and 2.5™ percentile values.

In the following section we will consider some examples that illustrate
some of the ideas presented here.

9.5 Case studies

Test Example

We first discuss an example with simulated data. Consider a linear chain
of irreversible uni-molecular reactions, with mass-action kinetics:

Sl—>S2—>S3—>S3—>S4—>S5 (913)

The noisy concentration data for the six metabolites, which is displayed
in Figure 9.10, was simulated with all the kinetic rate coefficients set to
2, and the initial concentration of the first substrate set to 10, and all the
others to zero.

The data in Figure 9.10 has 100 points. The noise was assumed to be expo-
nentially distributed and was added to the simulated curves, and presented
to the optimizer as the data for fitting the model. The simplex method
(the Levenberg-Marquardt gives similar results) to fit the parameters to the
data. The parameters were the five rate constants, which were initialized to
0.1. The fit is shown in the same Figure 9.10. A Monte Carlo simulation
was then run and for each such data set the parameters were optimized to
fit the data. Confidence limits were obtained using 9.12 and are shown in

264 CHAPTER 9. FITTING MODELS

Parameter Fits
12 ‘

Dotted Lines - DATA
10 Solid Lines — Simulation 1

Metabolite Concentrations

Time s

Figure 9.10 Plot of the simulated noisy time series concentration data,
and the fitted curves for a linear sequence of of reactions governed by
irreversible mass-action kinetics.

Table 9.3. Figure 9.11 shows the distribution of parameter estimates from
the Monte Carlo simulations.

The confidence limits, can also be evaluated from the Monte Carlo gener-
ated data (Figure 9.11) by choosing limits around the mean values of the
parameters, and making sure that 95%, of the points fall between them.
The confidence limits constructed in this manner match the ones computed
using equation 9.12. In addition the Hessian was found to be well behaved
and no significant correlation was found between the parameters (9.11).

9.5. CASE STUDIES 265

Parameter Value

ko 2.16 £0.05

k1 1.99 £ 0.042
ko 1.99 £ 0.083
ks 1.96 £0.183

k4 1.94 £ 0.199

Table 9.3 The table shows 95% confidence limits for the estimated pa-
rameters based on equation 9.12.

Fitting Data to HIV Proteinase

In the second example we fit rate constants to data obtained from a model
for irreversible inhibition of HIV proteinase [58]. The data that was an-
alyzed was obtained from www.biokin.com/dynafit/index.html, and
comprised of two different time courses at different inhibitor concentra-
tions. The parameters to be optimized were five rate constants, and the
initial guess values for the parameters, and initial substrate concentrations

www.biokin.com/dynafit/index.html

266

CHAPTER 9. FITTING MODELS

2.05 2.1
2.05
2
X g2
1.95
1.95
1.9 1.9
2.1 2.15 2.2 2.25 2.1 215 2.2 2.25
kO ko
2.1 2.1
2.05 2.05
§ 2 Q 2 %
1.95 1.95
1.9 1.9
1.85 1.85
19 195 2 205 21 19 195 2 205 21
k2 k1

Figure 9.11 Cluster plots for the distribution of fitted parameters for the
Monte carlo simulation, for various parameter combinations.

as described in [58]°. The model is described by the following equations:

M+ M

E+S

SE

E+ P

E+1

El

ka
ka
ko
ke

ky
ﬁ

kO}’l
—_—

ey

E

E

EP

ETI

EJ

9.14)

9In the example described above we chose the 4th and 5th data sets (Kuzmic 1996, curves
D, E of Fig 1, pg 264)), and used initial values of k,, = 100, k; = 0.0001, k, = 0.1,
1 =0.004, E = 0.004, and S = 27. In Kuzmic 1996, some of the species levels are also
optimized, but here we are more interested in fitting the parameters

9.5. CASE STUDIES 267

In Figure 9.12 we display the two data sets along with the fits.

Several combinations of optimizers were run, the simulated annealing and
simplex took the maximum time, but of the two, the latter gave better re-
sults. Running the GA first followed by running the simplex was also
successful. As can be seen in Figure 9.12, the fits seem to be quite satis-
factory.

Estimate for two time courses
0.2 : : : ‘ :

- Data

0.18F —— Simulation

0.16f T]
0.14f :,.,.l'V.
0.12r et]
0t a e]

008F]

Concentration of P

006 :
0.04F 1

0.02 b

0 500 1000 1500 2000 2500 3000 3500 4000
Time s

Figure 9.12 The plot showing the two time series concentration data along
with the fitted curves.

Using equation 9.12 to compute the parameter confidence limits, Table 9.4
shows the confidence limits for the parameters. The confidence limits on
ky, kp, ki and k 4, are substantially greater than their mean values, which is
a clear indication that these numbers cannot be trusted (see [77]). There-
fore a Monte Carlo simulation with a bootstrap using the residuals was
carried out by generating 500 data sets, and recomputing the statistics for
the parameters. Cluster plots for various combinations of parameters are
shown in Figure 9.11 and reveal some interesting patterns.

Table 9.5 shows the 95% confidence limits estimated from the cluster plots.

268 CHAPTER 9. FITTING MODELS

Parameter Value

ks 250.9225 =+ 0.69
ky 0.199 + 0.266
kp 35.04 & 109.9
ki 0.0469 + 7.46
kge ~ 0.229243.76

Table 9.4 The table shows 95% confidence limits for the estimated pa-
rameters using the Hessian computed at the end of the optimization.

ks kr kp kl kde
£0.31 | £0.006 | £0.37 | £0.01 | £0.11

Table 9.5 The table shows 95% confidence limits for the estimated pa-
rameters, using Monte-Carlo simulation.

These confidence limits are much tighter than those computed using the
Hessian (see Table 9.4). As indicated by the arrows, in Figure 9.13, the
Monte Carlo simulations uncovered significant correlation between a num-
ber of the parameters. This implies that certain combinations of parame-
ters could change, without having any effect on the concentrations of the
species. This is also known as the observability problem. For example,
consider a simple Michaelis-Menten set of reactions

S+E=FES—>P+E, 9.15)

where the reversible step between the substrate and complex are k1, k—1,
and the forward reaction rate between complex and product is k,. In terms
of these basic mass action reactions we derive the Michaelis-Menten rate,
by assuming that after a very brief transient time the complex forms and
after that it remains constant. Under these assumptions, the rate between

S and P is
VmaxS

- o 9.16
Km+ S ©-16)

9.5. CASE STUDIES 269

058 0.8
0.6 : 0.6
} } °
] . o]
° 0.4 04 S Xx
0.2 0.2 Jﬁ
0
0.18 0.24 0 005k0l1 015 0.2
I
37 . 0.12
0.1
36
a 0.08
X ~
0.06
35
0.04
34 0.02
249 250 K 251 252 518 02 K 022 024
S r

Figure 9.13 Cluster plots for the parameter distributions showing signifi-
cant correlations for some combinations.

where Viax = kaeo, eo being the enzyme concentration, and K, = e
Notice that if k is kept constant but k1, k—; are changed such that K, re-
mains the same, then the net rate does not change. This is obvious, since
we are only changing the final amount of complex generated, not the prod-
uct. Hence presented with time series data from such a simple model, we
will notice a correlation between the spread in the k1, k_; values. This is
generally true for larger models, but it may not be possible to find simple
combinations of these parameters which are truly independent. The impor-
tant point is that the cluster plots show observability of the parameters. It is
then a simple step to quantify this, by making the observation that the 2-D
cluster plots are sections of the m x m, (where m is the number of param-
eters) probability distribution of the fitted parameters. The eigenvectors of
the Hessian (inverse of the covariance matrix), corresponding to the lowest
eigenvalues, are directions along which, if the parameters change, then no
significant change in the sums of squares, € results. The eigenvalues of the
Hessian are, >~ 665,0.51,0.0076, 107>, 107>, It is interesting to study the

270 CHAPTER 9. FITTING MODELS

eigenvectors corresponding to the lowest eigenvalues, they are

—0.0019 | 0.0777
—0.0024 | —0.0028
0= 0.9999 | 0.0043 9.17)
—0.0102 | 0.9006
0.0118 | 0.4277

Notice that the first eigenvector implies that there is freedom to change &,
and for the second eigenvector, the combination of k;, k4., which is seen
as correlated in the second subplot in Figure 9.13. Calculating the Hessian
is useful since its eigenstructure can often be used to study degeneracy in
the model.

9.6 Analysis of Residuals

Parameter estimation procedures we discussed in the earlier sections will
produce values based on minimization of the sum of the squares of the
residuals. For the minimization procedure to yield best parameter esti-
mates several interrelated assumptions must be satisfied. The first assump-
tion is that the experimental uncertainties in the data are normally dis-
tributed with zero mean and constant variance. The second assumption
is that the errors are uncorrelated. Any departure from these assumptions
means that the residuals contain a structure that is not accounted for by the
model. Plotting residuals is therefore an effective way to investigate how
well the model fits the data and also to check if the above assumptions are
satisfied or not. One simple method to check for the normality assumption
is to construct a normal probability plot [76, 102]. The process requires
that the residuals are ranked in increasing order such that

1 <ep<e3<..<g <..<ge¢y

where ¢; is the i*” residual value. If we plot the cumulative probability P;

= i—I?.s , against the residuals values, then in case of normally distributed

9.6. ANALYSIS OF RESIDUALS 271

residuals the resulting points should be in close proximity to a straight line.
Any substantial deviations from the straight line indicate that the normality
assumption is violated. Figure 9.14 displays normal probability plots for
two sets of residuals.

e Random Residuals
o Non-Random Residuals

e.
1

Figure 9.14 Normal probability plots for two sets of residuals.

A plot of residuals e; versus the corresponding fitted values can be used
to check the zero mean and homoscedasticity (constant variance) assump-
tions. Since the residuals are the deviations of the observations away from
fitted values, in an ideal case we would expect the residuals to vary ran-
domly about zero and their spread be almost the same across the plot. If
the points in the plot lie on a curve around zero, rather than fluctuating
randomly, it is an indication that the zero mean assumption is broken. If
the residuals exhibit a pattern, i.e, increase or decrease in magnitude with
the fitted values, it is an indication that the constant variance assumption
is violated. A plot of residuals against fitted values may sometimes also
reveal points with unusually large residuals. These points are potential
outliers, that is, data points for which the model is not appropriate. The
presence of outliers in the data sets may significantly influence the estima-
tion of model parameter values, it is therefore important to identify those
points and correct them (whenever possible) or delete them from the raw
data sets. However, in some cases outliers may actually actually aid in

272 CHAPTER 9. FITTING MODELS

improvement of our knowledge about the system under consideration. So
one should do a detailed investigation before characterizing and rejecting
outliers (see [4]).

Whenever the time sequence in which the data is obtained is known, it is a
good idea to generate time series plot of the residuals. The purpose of this
is to check there is any correlation between the residuals over time. If the
residuals are independent, we expect them fluctuate in a random fashion
around a base line centered at zero. Thus time series plot can validate our
second assumption of uncorrelated errors.

9.7 x>-Goodness of Fit Test

If the standard deviation associated with each data point obtained from the
experiment is known, then the variance of the fit between the model and
the experimental observations can be characterized by the y? statistic

1
= ;m(% — fxiipr... pm))? 9.18)

The probability distribution for y? at its minimum can be derived analyt-
ically and is equivalent to chi-square distribution with (N — P) degrees
of freedom, where N is the number of data points, and P the number of
parameters. The value of y? approaches unity for a good fit between the
model and data and grows larger as the fit with the data worsens. Of more
interest to us is the probability Q that the chi-square will exceed a partic-
ular value of y? by chance, even for a correct model. The quantity Q, can
be obtained from the tabulated values in statistics books. Small values of
Q indicate that either the model is wrong or that there are discrepancies in
the measurement errors.

9.8 Caveats in Data Fitting

The experimental data has been collected, a model has been proposed and
data fitting has confirmed that the model is able to reproduce the experi-

9.9. AVAILABILITY IN MODELING APPLICATIONS 273

mental data very well. The next question is what next? The first thing to
emphasize is precisely what was implied in the last sentence. That is, the
model reproduces the experimental data, and that is all it does. The real test
of a model is whether it can now make new non-trivial predictions. There
are many models that one could propose that might fit the data adequately,
some complex, some simple.

Is it the truth? No!

Can the fitted model make non-trivial predictions?

9.9 Availability in Modeling Applications

There are a number of biochemical modeling applications that support
curve fitting of differential equation models. The most popular tools in
this category (in alphabetic order) include, COPASI'?, PottersWheel'!,
SBSI'?, VCell'®. COPASI in particular has an extensive set of parameter
fitting algorithms. For Matlab users, PottersWheel is probably the choice
although it is not entirely clear from the documentation what optimiza-
tion algorithms are available. There is also a long standing set of software
and parameter optimization code by Peter Kuzmic who can provide expert
consultancy on parameter fitting.

9.10 Using Python to Fit Data

Python has good support for optimization and data fitting via the SciPy
(www . scipy.org) extension. SciPy supports the optimize package'* which
in turn implements a number of optimization algorithms including the
Nelder and Mean simplex approach. The script showin in listing 9.1 shows
a simple example of to fit a Michaelis-Menten equation to some data.

Onttp://www. copasi.org/

Uhttp://www.potterswheel.de/

2http://www.sbsi.ed.ac.uk/

B http://www.vcell.org/
Yhttp://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

www.scipy.org
http://www.copasi.org/
http://www.potterswheel.de/
http://www.sbsi.ed.ac.uk/
http://www.vcell.org/
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

274 CHAPTER 9. FITTING MODELS

from scipy import *

from scipy import optimize

x = array([0, 10, 20, 50, 100, 200, 400])
y = array([O, 9, 10, 17, 18, 20, 19])

def residuals (p):
[vmax,Km] = p
return y - vmax*x/(Km+x)
output = optimize.leastsq (residuals, [10, 10])

Listing 9.1 Python Script to Fit Data

The output variable will contain the values for the fitted V.« and K,
which in this case is 20.745, 15.408. The y data was generate from a curve
with Vinax = 20 and K3, = 15 with added noise to simulate experimental
error.

One important point work noting, the leastsq routine expects a routine
called residuals to return the differences between the data and the model.
In order words there is no need to square and sum up the residuals to com-
pute the chi-square directly. In general the residuals routine will compute
the following component of the sums of squares:

yi — f(xi, p)
o

We can go further and plot the results of the fit using the code in listing 9.2:

def peval(x, p):
return pl0]*x/(p[1]+x)

Vmax,Km = 20,15
yTrue = Vmax*x/(Km+x)

import matplotlib.pyplot as plt
plt.plot(x, peval (x, output[0]), ’--’, x, y, ’0’, x, yTrue,
’r?, x, residuals(output[0]), ’r~’, markersize=10)
plt.title(’Least-squares fit to noisy data’)
plt.legend([’Fitted Curve’, ’Noisy Data’,
’Underlying Function’, ’Residuals’], loc=10)

9.10. USING PYTHON TO FIT DATA 275

plt.show()

Listing 9.2 Python Script to Fit Data

The Python leastsq uses a modified Levenberg-Marquardt algorithm from
the minipack Imdif routine. By calling 1sq with an addition argument,
output = 1sq (residuals, [10, 10], full_output=1), it is pos-
sible to obtain the covariance matrix. To obtain confidence limits, the
main diagonal elements will need to be multiplied by the reduced chi-
square and and the 95% limit, 1.96 (See 9.12). However it may be easier
to call curve_fit which will directly return the 68% confidence limits al-
though there is less control over the data that can be used in the fit, for
example when there are multiple time courses to fit.

leastsq doesn’t directly support Monte Carlo parameter estimation, there-
fore this will need to be programmed in separately in Python.

20 Least-squares fit to noisy data

15f

10f - - Fitted Curve
® ® Noisy Data
— Underling Function

51 A A Residuals
4
op 1
~ 50 100 150 200 250 300 350 400

Figure 9.15 Results from Python fitting code, comparing the fitted model
to the underling actual model.

276 CHAPTER 9. FITTING MODELS

Further Reading

1. Johnson ML (1994) Use of Least-Squares Techniques in Biochem-
istry. Methods in Enzymology, 240, 1-22.

2. Straume M, Johnson ML (1992) Monte Carlo Method for deter-
mining complete confidence probability distributions of estimated
model parameters. Methods in Enzymology, 210, 117-129

3. Johnson ML, Faunt LM (1992) Parameter estimation by least-squares
methods. Methods in Enzymology, 210, 1-37

Appendices

277

Kinetics in a Nutshell

Definition

Reaction Kinetics is the study of how fast chemical reactions take place,
what factors influence the rate of reaction and what mechanisms are re-
sponsible.

Stoichiometric Amount

This is defined as the number of molecules a particular reactant or product
takes part in a reaction. For example:

2A+4+3B - A+ 3C

In the example above the stoichiometric amount for reactant A4 is 2, for B
is 3. The stoichiometric amount for product A4 is 1 and for C is 3.

279

280 APPENDIX A. KINETICS IN A NUTSHELL

Depicting Reactions
aA+bB+...—> +pP +qg0 + ...

where a, b, . . . are stoichiometric amounts.

Rates of Change

The rate of change is defined as the rate of change in concentration or
amount of a designated molecular species.

Rate Of Change = Ccli_f

Stoichiometric coefficients

The stoichiometric coefficient, c;, for a molecular species A4;, is the dif-
ference between the molar amount of the species on the product side and
the molar amount of the species on the reactant side.

¢; = Molar Amount of Product — Molar Amount of Reactant

In the reaction, 24 — B, the molar amount of A on the product side is
zero while on the reactant size it is two. Therefore the stoichiometric coef-
ficient of A is given by 0 —2 = —2. In many cases a particular species will
only occur on the reactant or product side and it is not to common to find
situations where a species occurs simultaneously as a product and a reac-
tant. As a result, reactant stoichiometric coefficients tend to be negative
while product stoichiometric coefficients tend to be positive.

Reaction Rates

The reaction rate, often denoted by the symbol v, is measured with respect
to a given molecular species normalized by the species’ stoichiometric co-
efficient. This definition ensures that no matter which molecular species

281

in a reaction is measures, the reaction rate is uniquely defined for that re-
action. More formally the reaction rate for the given reaction:

aA+bB+...— pP +q0 +...
1dA _ 1dB _ 1dP _1dQ

wd T md T oA ed

where ¢, are the stoichiometric coefficients. Alternative we can write the
rate of change in terms of the reaction rate as follows:

dA

a = CqV (A.1)

Elementary mass-action kinetics

An elementary reaction is one that cannot be broken down into simpler
reactions. Such reaction will often have simple kinetics called mass-action
kinetics. For a reaction of the form

aA+bB+...—> +pP +qg0 + ...

the mass-action kinetic rate law is given by:

v=k1A*BY ... —k,PPQY ...

where k1 and k5 are the forward and reverse rate constants respectively.

Chemical Equilibrium

In principle all reactions are reversible, meaning transformations can oc-
cur from reactant to product or product to reactant. The net rate of a re-
versible reaction is the difference between the forward and reverse rates.
At chemical equilibrium the forward and reverse rates are equal. Chemical
equilibrium is then given by:

B

Z == Keq (A.2)

282 APPENDIX A. KINETICS IN A NUTSHELL

This ratio has special significance and is called the equilibrium constant,
denoted by K¢4. The equilibrium constant is also related to the ratio of the
rate constants, k1 /k,. For a general reversible reaction such as:

aA+bB+...=pP +q0 +...

and using arguments similar to those described above, the ratio of the rate
constants can be easily shown to be:

PPQY... Ky

== A3
47 gapb T ks, (A-3)

where the exponents are the stoichiometric amounts for each species.

Mass-action and Disequilibrium Ratio

Although in closed systems, reactions will tend to equilibrium, reactions
occurring in living cells are generally out of equilibrium and the ratio of
the products to the reactants in vivo is then called by the mass-action ratio,
I'. The ratio of the mass-action ratio to the equilibrium constant is often
called the disequilibrium ratio:

r
Keq

p= (A4)

At equilibrium, the mass-action ratio will be equal to the equilibrium con-

stant and p = 1. If the reaction is away from equilibrium (B/A4 < Kegq)
then p < 1.

For a simple unimolecular reaction it was shown previously that the equi-
librium ratio of product to reactant, B/ A, is equal to the ratio of the for-
ward and reverse rate constants. Substituting this into the disequilibrium

ratio gives:
k» Bks

Therefore

p=— (A.5)

283

That is the disequilibrium ratio is the ratio of the reverse and forward rates.
If p < 1, then the net reaction must in the direction of product formation.
If p is zero then the reaction is as out of equilibrium as possible with no
product present.

Modified Mass-Action Rate Laws

A typical reversible mass-action rate law will require both the forward and
the reverse rate constants to be fully defined. Often however, only one rate
constant may be known. In these circumstances it is possible to express
the reverse rate constant in terms of the equilibrium constant.

For example, given the simple unimolecular reaction, A = B. it is possi-
ble to derive the following:

v =k1A—sz
ko B
=kiAl1-—
reh (klA)
) k1
Since K¢y = o
2
I
b= kA (1 -) (A6)
Keq

where I is the mass-action ratio. This can be generalized to an arbitrary
mass-action reaction to give:

r
v=k1A“Bb...(1—)=k1A"Bb...(1—p)

Keq

where A?B? ... represents the product of all reactant species, a and b are
the corresponding stoichiometric amounts, and p is the disequilibrium
ratio. For example, for the reaction:

2+ B — C +2D
where k; is the forward rate constant, the modified reversible rate law is:

v=Fk1A’B (1 —p)

284 APPENDIX A. KINETICS IN A NUTSHELL

The modified formulation demonstrates how a rate expression can be di-
vided up into functional parts that include both kinetic and thermody-
namic components [45]. The kinetic component is represented by the term
ki1A%Bb ... while the thermodynamic component is represented by the
expression 1 — p.

We can also derive the modified rate law in the following way. Given
the net rate of reaction v = vy — v,, we can write this expression in the

following way:
v =vf (1 - v_r)
vf

v=1vp(1-p)

That is:

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edi-
tion, Ambrosius Publishing ISBN: 978-0982477335

Enzyme Kinetics in a Nutshell

Enzymes

Enzymes are protein molecules that can accelerate a chemical reaction
with changing the equilibrium constant of the reaction of themselves.

Enzyne Kinetics

Enzyme kinetics is a branch of science that deals with the many factors
that can affect the rate of an enzyme-catalysed reaction. The most impor-
tant factors include the concentration of enzyme, reactants, products, and
the concentration of any modifiers such as specific activators, inhibitors,
pH, ionic strength, and temperature. When the action of these factors is
studied, we can deduce the kinetic mechanism of the reaction. That is, the
order in which substrates and products bind and unbind and the mechanism
by which modifiers alter the reaction rate.

285

286 APPENDIX B. ENZYME KINETICS IN A NUTSHELL

Michaelis-Menten Kinetics

The standard model for enzyme action, describes the binding of free en-
zyme to the reactant forming an enzyme-reactant complex. This complex
undergoes a transformation, releasing product and free enzyme. The free
enzyme is then available for another round of binding to new reactant.

k1 ko>
E+S—ES—E+P (B.1)
k—1

where k1, k_1 and k, are rate constants, S is substrate, P is product, E is
the free enzyme, and ES the enzyme-substrate complex.

By either assuming rapid equilibrium between enzyme, substrate and the
substrate complex, or assuming a steady state condition on the enzyme
substrate complex, an aggregate rate law, often called the Michaelis-Menten
equation in the case the rapid equilibrium assumption or the Briggs-Haldane
equation when using the steady state assumption is given by:

Vim S

=2 B.2
v K, 55 (B.2)

where 1}, is the maximal velocity and KM, the substrate concentration
that yield have the maximum velocity.

Product Inhibition
Reversible Rate laws

An alternative and more realistic model is the reversible form:
k1 ko
k_1 k_»

The aggregate rate law for the reversible form of the mechanism can also
be derived and is given by:

287

.

0.8 |- a

0.6 A

0.4

Initial Reaction Rate, v §

\‘r | | | | |
0 TS 10 15 20 25 30

K, Substrate Concentration (.S)

Figure B.1 Relationship between the initial rate of reaction and substrate
concentration for a simple Michaelis-Menten rate law. The reaction rate
reaches a limiting value called the V;,. K, is set to 4.0 and V;, to 1.0. The
K3, value is the substrate concentration that gives half the maximal rate.

_ Vs S/Ks—V: P/Kp
"~ 1+ S/Ks+ P/Kp

(B.4)

Haldane Relationship

For the reversible enzyme kinetic law there is an important relationship:

Pog Vi Kp
Seq Vr KS

(B.5)

and shows that the four kinetic constants, V¢, Vi, Kp and K are not inde-
pendent. Haldane relationships can be used to eliminate one of the kinetic
constants by substituting the equilibrium constant in its place. This is use-
ful because equilibrium constants tend to be known compared to kinetic
constants. By incorporating the Haldane relationship we can eliminate the

288 APPENDIX B. ENZYME KINETICS IN A NUTSHELL

reverse maximal velocity (V}) to yield the equation:
_ Vi/Ks(S — P/Keq)
1+S/Ks+ P/Kp

Separating out the terms makes it easier to see that the above equation can
be partitioned into a number of distinct terms:

(B.6)

B S/Ks
v=Vr - (1=T/Keg) " 17 STks 1 F75s (B.7)

where I' = P/S§. The first term, Vy is the maximal velocity; the second
term, (1 — I'/K,.q) indicates the direction of the reaction according to
thermodynamic considerations and the last terms refers to the fractional
saturation with respect to substrate. We thus have a maximal velocity, a
thermodynamic term and a saturation term. We will see this breakdown
into distinct terms repeatedly as we consider other enzyme kinetic rate
laws.

Competitive Inhibition

There are many molecules capable of slowing down or speeding up the
rate of enzyme catalyzed reactions. Such molecules are called enzyme in-
hibitors and activators. One common type of inhibition, called competitive
inhibition, occurs when the inhibitor is structurally similar to the substrate
so that it competes for the active site by forming a dead-end complex.

The kinetic mechanism for a pure competitive inhibitor is shown in Fig-
ure B.2(a), where [/ is the inhibitor and EI the enzyme inhibitor complex.
If the substrate concentration is increased, it is possible for the substrate
to eventually out compete the inhibitor. For this reason the inhibitor alters
the enzyme’s apparent K, but not the V.

1
S + K (1 + —)
K; (B.8)

Vin S/ Km
1+ S/Km + I/K;

289

a) Competitive Inhibition b) Uncompetitive Inhibition
E ES——FE+P E ES E+P
EI ESI

Figure B.2 Competitive and uncompetitive inhibition. P is the concentra-
tion of product, E is the free enzyme, ES the enzyme-substrate complex,
and ESI the enzyme-substrate-inhibitor complex.

At I = 0, the competitive inhibition equation reduces to the normal irre-
versible Michaelis-Menten equation. Note that the term K, (1 + //K;) in
the first equation more clearly shows the impact of the inhibitor, /, on the
K. The inhibitor has no effect on the V},.

The reversible form of the competitive rate law can be derived from equa-
tion (2?) by setting a > 1 and b = 0 and is shown below:

(B.9)

where V}, is the forward maximal velocity, and K and K, are the substrate
and product half saturation constants.

Sometimes reactions appear irreversible, that is no discernable reverse rate
is detected, and yet the forward reaction is influenced by the accumulation
of product. This effect is caused by the product competing with substrate
for binding to the active site and is often called product inhibition. Given
that product inhibition is a type of competitive inhibition we will briefly
discuss it here. An important industrial example of this is the conversion
of lactose to galactose by the enzyme S—galactosidase where galactose
competes with lactose, slowing the forward rate [37].

To describe simple product inhibition with rate irreversibility, we can set

290 APPENDIX B. ENZYME KINETICS IN A NUTSHELL

the P/ K,4 term in the reversible Michaelis-Menten rate law (B.4) to zero.
This yields:

v = VinS (B.10)

S+ K 1+P
m K,

It is not surprising to discover that equation (B.10) has exactly the same
form as the equation for competitive inhibition (B.8). Figure ?? shows
how the reaction rate responds to increasing product concentration at a
fixed substrate concentration. As the product increases, it out competes
the substrate and therefore slows down the reaction rate.

We can also derive the equation by using the following mechanism and the
rapid equilibrium assumption:

E+S—=ES—>EP=E+P (B.11)

where the reaction rate, v o« ES.

Cooperativity

Many proteins are known to be oligomeric, that is they are composed of
more than one identical protein subunit where each subunit has one or more
binding sites. Often the individual subunits are identical.

If the binding of a ligand (a small molecule that binds to a larger macro-
molecule) to one site alters the affinity at other sites on the same oligomer
then this is called cooperativity. If ligand binding increases the affinity of
subsequent binding events, it is termed positive cooperativity whereas if
the affinity decreases then it is termed negative cooperativity. One char-
acteristic of positive cooperativity is that it results in a sigmoidal response
instead of the usual hyperbolic response.

The simplest equation that displays sigmoid like behavior is the Hill equa-
tion:

291

Vm S"

- B.12
v K, + 5" (B.12)

One striking feature of many oligomeric proteins is the way individual
monomers are physically arranged. Often one will find at least one axis
of symmetry. The individual protein monomers are not arranged in a hap-
hazard fashion. This level of symmetry may imply that the gradual change
in the binding constants as ligands bind, as suggested by the Adair model,
might be physically implausible. Instead one might envisage transitions to
an alternative binding state that occurs within the entire oligomer complex.
The original authors laid out the following criteria for the MWC model:

1. The protein is an oligomer.

2. Oligomers can exist in two states: R (relaxed) and T (tense). In each
state, symmetry is preserved and all subunits must be in the same
state for a given R or T state.

3. The R state has a higher ligand affinity than the T state.
4. The T state predominates in the absence of ligand .

5. The ligand binding microscopic association constants are all identi-
cal, this is in complete contrast to the Adair model

Given these criteria, the MWC model assumes that an oligomeric enzyme
may exist in two conformations, designated T (tensed, square) and R (re-
laxed, circle) with an equilibrium between the two states with equilibrium
constant, L = T'/R, also called the allosteric constant. If the binding con-
stants of ligand to the two states are different, then the distribution of the R
and T forms can be displaced either towards one form or the other. By this
mechanism, the enzyme displays sigmoid behavior. A minimal example
of this model is shown in Figure B.3.

In the exclusive model (Figure B.3), the ligand can only bind to the re-
laxed form (circle). The mechanism that generates sigmoidicity in this
model works as follows. When ligand binds to the relaxed form it dis-
places the equilibrium from the tense form to the relaxed form. In doing
so, additional ligand binding sites are made available. Thus one ligand

292 APPENDIX B. ENZYME KINETICS IN A NUTSHELL

770N
TM=03 ©®
N/

Figure B.3 A minimal MWC model, also known as the exclusive model,
showing alternative microscopic states in the circle (relaxed) form. L is
called the allosteric constant. The square form is called the tense state.

binding may generate four or more new binding sites. Eventually there
are no more tense states remaining at which point the system is saturated
with ligand. The overall binding curve will therefore be sigmoidal and
will show positive cooperativity. Given the nature of this model, it is not
possible to generate negative cooperativity. By assuming equilibrium be-
tween the various states it is possible to derive an aggregate equation for
the dimer case of the exclusive MWC model:

S 1+ S
kR kR
§\2
1+ — L
(" kR) "
This also generalizes to n subunits as follows:
S (s\ !
— 1+ —)
y = FR kr (B.13)

S n
1+ — L
(+kR) -

For more generalized a reversible rate laws the exhibit sigmoid behavior
the reversible Hill equation is a good option to use.

V= Vm

293

Invoking the rapid-equilibrium assumption we can write the various com-
plexes in terms of equilibrium constants to give:

L _Va(-p e+
1+ (a +7)?

where p = I'/K.q. For an enzyme with / (using the authors original
notation) binding sites, the general form of the reversible Hill equation is
given by:

L Ve (=p) @+ n)h1

B.14
1+ (4)" ()

Allostery

An allosteric effect is where the activity of an enzyme or other protein is
affected by the binding of an effector molecule at a site on the protein’s
surface other than the active site. The MWC model described previously
can be easily modified to accomodate allosteric action.

0O
T, Rz/sz\
Dj<—T'OO O RX,
L= D:‘ — T2\O®/

OO R RoX

Figure B.4 Exclusive MWC model based on a dimer showing alternative
microscopic states in the form of 7" and R states. The model is exclusive
because the ligand, X, only binds to the R form.

The key to including allosteric effectors is the equilibrium between the
tense (T) and relaxed (R) states (See Figure B.4). To influence the sig-

294 APPENDIX B. ENZYME KINETICS IN A NUTSHELL

moid curve, an allosteric effector need only displace the equilibrium be-
tween the tense and relaxed forms. For example, to behave as an activator,
an allosteric effector needs to preferentially bind to the R form and shift
the equilibrium away from the less active T form. An allosteric inhibitor
would do the opposite, that is bind preferentially to the T form so that the
equilibrium shifts towards the less active T form. In both cases the 1/, of
the enzyme is unaffected.

The net result of this is to modify the normal MWC aggregate rate law to
the following if the effector is an inhibitor:

B a(l4+a)" !
A+)"+ LA+ Py

v (B.15)

wherea = S/Ksand B = I/Kj. K and K are kinetic constants related
to each ligand. A MWC model that is regulated by other an inhibitor and
an activator is represented by:

. a(l+a)* !
" n (1+p)"
(1+a) +L—(1)

There are also reversible forms of the allosteric MWC model but is fairly
complex. Instead it is possible to modify the reversible Hill rate law to
include allosteric ligands.

) (o + n)h_l
v = ot (B.16)

1+ ph
IR NP
l+on

Vea (1- L
a —_—
f K

where

o<1 inhibitor

o>1 activator

295

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edi-
tion, Ambrosius Publishing ISBN: 978-0982477335

296 APPENDIX B. ENZYME KINETICS IN A NUTSHELL

Math Fundamentals

C.1 Notation

Sum and Product:

n
a1+a2+a3+...+an=Za,~
i=1

n
ayl Xdy Xasz X ... Xay = 1_[611'
i=1
Vectors and Matrices:

Bold lower case letters indicate vectors, for example: v, s

Bold upper case letters indicate matrices, for example: N, X.

297

298 APPENDIX C. MATH FUNDAMENTALS

Derivatives:

One the left is Leibniz’s notation and on the right Lagrange’s notation:

af
Y =
d>f "
L=
o
dxn - f ('x)

C.2 Short Table of Derivatives

d

E[C]_
i[cu]—cd—u

d o d
i[uv]—u@%—vd—u
d - dx d
d n n_1du
dx[u]—nu dx
d (10] 1 du
—[lnu]l = — —

dx dx

d . du
a[sm(u)] = cos(u) I

d
E[x] =
—[u +v] = du B
d dx dx
Ly B
E[“/”)] = %
d df du
a[f(”)] = %f(u) a
det udu

=" —
dx dx

d) du
a[cos(u)] = —sin(u) Ix

C.3. LOGARITHMS 299

C.3 Logarithms

log(AB) = log(A) + log(B)
log(A/B) = log(A) —log(B)
log(A™) = n log(A)

X" x x™ = xntm
n

X — xn_m
nm

(xn)m — anm

C.4 Partial Derivatives

If the value of a given function depends on two variables then we write this
function in the form:

u=f(x,y)

If it is possible to change x without affecting y then x and y are called
independent variables. The rate of change of u with respect to x when x
varies but y remains constant is called the partial derivative of u with
respect to x. Partial derivatives are denoted using the partial symbol, 9.
That is the partial derivative of u with respect to x is:

ou
ox
Likewise the partial derivative of u with respect to y is given by:
ou
dy

To find a partial derivative, we simply differentiate with respect to the vari-
able of interest while treating the remaining variables as constants. For
example, the reaction rate for a given reaction is v = k1.8 — k» P, where

300 APPENDIX C. MATH FUNDAMENTALS

S is the reactant, P the product and k; and k; the rate constants. In a
controlled environment we should in principle be able to change S and P
independently. Therefore we can write down the partial derivatives of the
reaction rate with respect to S and P as follows:

dv

— =k
as !
dv

— =k
aP 2

In order to indicate what variables are kept constant in the partial derivative
the following notation is sometimes used, particulary in thermodynamics:

dv
i =k
(N) P
v
—) =k
(3P) S ?
Or for function with many variables, x, y, z, . . ., the notation would extend

tO.
(8u) 3 Z yeen

Like derivatives, partial derivatives are defined in terms of a limit. For
example the partial derivatives for the function, f(x, y) are defined as:

o) _ et h) = ()
0x N h—0 h

o) Oy = ()
8y N h—0 h

The graphical interpretation of a partial derivative, df(x, y)/dx is that it
represents the slope of the function, f(x, y) in the x direction.

C.5. DIFFERENTIAL EQUATIONS 301

C.5 Differential Equations

Differential equations are equations that contain derivatives. For example,
the following is a differential equation:

= 4+y2=0
An ordinary differential equation is where the derivatives are functions

of the same variable. For example, the following equations are ordinary
differential equations:

dy_a

dx y

dy

— =2 3y — 8
e X + 3y
d?y xdu_o
dx? dx

A differential equation expressed in terms of the first derivative (dy/dx)
is called a first-order differential equation. A differential equation that
is expression in terms of second order derivatives (d2y/dx?) is called a
second-order differential equation. When solving differential equations
the objective is to find the function y(x) such that when differentiated
gives the original differential equation. For example the solution to:

dy
— =a
dx Y
18
y = yoe?* (C.1)

If we differentiate the solution (C.1) we get back the original differential
equation.

Differential equations are used very often to model physical systems where
they describe the rate of change of some variable with respect to time, .
The reason why they are used is because we may not explicitly know the

302 APPENDIX C. MATH FUNDAMENTALS

solution y(¢) but we will often know the rate of change the variable has
at any given moment in time, dy/dt. This means we can at least obtain a
numerical solution to y(¢) even if the analytical solution is unobtainable.

Differential equations can be further classified as autonomous or non-
autonomous. Autonomous differential equations are the most common
in biochemical models. These equations do not depend on time, that is
the right-hand side of the differential equation has no terms relating ex-
plicitly to time. For example equation C.2 is autonomous equation C.3 is

non-autonomous:
dx

2 —=x2410 C2
dt Xt €2
dx 5

— = t—5 C3
= + (C.3)

A partial differential equation is one where the derivatives are functions
of more than one derivative. For example the equation is a partial differen-

tial equation:
ou Ju dp

- + y——= —

ot ox Ox
Note the use of the partial d (0) in the partial differential equation to in-
dicate that the function u is differentiated with respect to more than one

variable. The partial derivative also indicates than when a derivative is
made, other other constants are assumed to be held constant.

C.6 Taylor Series

Expressions like 14-2x +6x2 and 2+4.x +x2—3x3 that consist of the sum
of a number of terms raised to a positive power are called polynomials. The
only operations allowed in a polynomial are addition, subtraction, multipli-
cation and non-negative integer powers. One of the simplest polynomials
is the straight line, y = a + bx, termed a polynomial of first degree. The
coefficients, a and b can be chosen so that the line will pass through any
two points. That is we can express any straight line using y = a + bx.
Similarly for a polynomial of second degree, y = a+bx +cx?, a parabola,

C.6. TAYLOR SERIES 303

we can choose the constants, a, b and ¢ so that the curve can pass through
any three points.

It follows that we can find a polynomial equation of n" degree that will
pass through any n 4 1 points. If the polynomial has an infinite number
of terms, then we can imagine that the polynomial can be made to follow
any function, f(x) by suitable adjustment of the polynomial coefficients.
Although this statement may not always be true, in many cases it is which
makes the polynomial series very useful.

A polynomial of infinite degree is called a polynomial series:

f(x)=Co+01x+62x2+03x3+,,,

The question is, how can we find the polynomial series that will represent
a given function, for example sin(x)? To answer this we have to determine
the constants, ¢,, ¢ etc. in the polynomial equation. Let us assume that
we wish to know the value of sin(x) at x = 0 using a polynomial series.
At x = 0, all terms vanish except for c,, therefore at x = 0:

f(0) =co

We can therefore interpret the first constant, ¢, as the value of the function
at x = 0. What about c;? Let us take the derivative of the series, that is:

f(x) = c1 + 2cax + 3c3x% + . ..

If we set x = 0, we find that:
f1(0) =c1

That is the second constant, ¢y, in the polynomial series is the first deriva-
tive of the function. If we take the second derivative we can also show that
atx = 0, f/(x0) = 2¢,, thatis c; = f”(0)/2. For the third derivative
we can show that f"”/(0) = 3(2)cs, thatis ¢c3 = f"/(0)/(3!). This pattern
continues for the remaining terms in the polynomial so that we can now
write:

10 5 17O

F0) = fO + £/ O + I +

+ ...

304 APPENDIX C. MATH FUNDAMENTALS

Function Second order approximation

1 2
T+x 1+X+X
JTFx 1+5+%
sin(x) X

Table C.1 Examples of common approximations

This series is called the Maclaurin series for the function, f(x). It ap-
proximates the function around the specific value of x = 0. To illustrate
the use of the Maclaurin series consider expanding sin(x) around x = 0.
£(0) will equal sin(0) = 0. f/(0) = cos(0) = 1 and so on. We can
therefore write the series as:

1 1
sm(x)—0+1x+0—3—x —I—O—i—ax —

3 5
X X
51n(x)—x—§+——...
What if we wanted to approximate a function about an arbitrary value of
x? To do this we would use the Taylor series which is a generalization of
the Maclaurin series. The Taylor series is defined by:
of 3 f

f(x):f(xo)'i‘a(x 0)+2'3 2 _Xo)z

1 f

n! oxn

+ ...+ (x—x)"+... (C4)

where the approximation is now centered on x,. If we set x,, equal to zero
we will obtain the Maclaurin series.

C.7 Total Derivative

Consider the function:

J@) = f(x@).y(@)

C.8. EIGENVALUES AND EIGENVECTORS 305

The derivative of f(¢) with respect to ¢, is given by the chain rule:

af _afa of dy
dt Oxdt Oy dt

Note the use of partial derivatives. This equation is often abbreviated to:

df = %dx + %dy
ax dy

where it is called the total derivative. Often the variable, ¢ is not speci-

fied in the total derivative. Operationally the total derivative computes the
change in f, given small changes in x and y.

C.8 Eigenvalues and Eigenvectors

A square matrix such as A can be use to transform a given vector, v in
specific ways. For example, if the matrix A is:

2 0

0 4
then the result of multiplying A into v will yield a vector that is similar to
v but where the first element is scaled by 2 and the second element by 4.

For an arbitrary square matrix, if it is possible to find a vector v such than
when we multiple the vector by A we get a scaled version of v, then we
call the vector v the eigenvector of A and the scaling value, the eigenvalue
of A. For a matrix of dimension #, there will be at most n eigenvalues and
n eigenvectors. In the case of the simple example above the eigenvalues
must be 2 and 4 respectively while the two eigenvector will be:

o) L

The definition of an eigenvector and eigenvalue is often given in the form:

Av =Av

306 APPENDIX C. MATH FUNDAMENTALS

We can rearrange this equation as follows:

Av = Alv
Av—AIv=0
A-ADHv=0

From linear algebra we know that there will be non-zero solutions to (A —
Alv = 0 if det(A — AI) = 0. We can use this observation to compute
the eigenvalues and eigenvectors of a matrix. For example consider the

matrix:
36
1 4
Computing A — A1 yields:

3—-14 6
A—-Al =
1 4—A

det(A —AI) = (3—A)(@d—1)—6

=12 —71+6
=A-6A-1)

The eigenvalues are therefore 6 and 1. With two eigenvalues there will be
two eigenvectors. First we consider A = 6.

QL s
["f _g} b =0

By inspection we can see that the eigenvector is:

]

C.8. EIGENVALUES AND EIGENVECTORS 307

satisfied this equation. Likewise we can do the same for the other eigen-
value, A = 1 where the corresponding eigenvector is found to be:

N

Further Reading

1. Smail LL (1953) Analytical Geometry and Calculus. Appleton-
Century-Crofts ISBN: 978-0982477311

308 APPENDIX C. MATH FUNDAMENTALS

Statistics Reminder

D.1 Mean

The mean is the sum of values divided by the number of values:

The mean is not necessarily the middle value but depends on the skewness
of the values. The central value is called the median.

D.2 Deviation

A measure of deviation of a variable y form its mean is called the standard
deviation, denoted by o. A related measure, o2, is called the variance.
Consider the mean of a set of numbers, x; to be ;. We can compute the

309

310 APPENDIX D. STATISTICS REMINDER

deviation each x; is from the mean as:

di =xi—
If we take the square of the deviations and compute the average we obtain

the variance: |
0% = NZ(xi = M)z

D.3 Standard Error

If we were to sample a population multiple times we could calculate a
mean for each sample. The standard deviation for the set of means is
called the standard error. The value of the standard error can be calculated
using a remarkably simple formula:

SE; = ——

VN
Strictly speaking o should be the standard deviation of the population but
often this is not available and instead the sample standard deviation is used
instead. The standard error is also a convenient measure of how precise
our measurements are, that is how close a set of measurements are to each

other.

D.4 Covariance

If the variability of one variable, x, is influenced by another, y, then this
dependence is measured using the covariance, Cov(x, y). The covariance
between two variables is defined by:

1
Cov(x,y) =+ [= i) (i = p1y)]
A positive covariance means that the two variables as positively correlated.
A covariance of zero means that the two variables are statistically indepen-
dent.

D.5. NORMAL DISTRIBUTION 311

- 95.4% >
u—20 H—=0 H

Figure D.1 Normal Distribution: The 68.3% and 95.4% intervals repre-
sent one and two standard deviations away from the mean, u.

D.5 Normal Distribution

The normal or Gaussian distribution is a continuous probability distribu-
tion that describes the probability of obtaining a given value, x when the
distribution has mean p and standard deviation o. The probability in a
normal distribution is described by the area under the curve such that the
total area is equal to one. The mean corresponds to the peak of the curve
(since it is symmetric) and the standard deviation to the width. If a random
variable is known to be normally distributed then the Gaussian curve tells
us that there is 68.3% chance that the value will lie within one standard
deviation from the mean (Figure D.1).

The equation that defines the Gaussian distribution is given by:
_a-pw?

— 202
ACY) i

D.6 Confidence Interval

It is often the case that we would like to know the likelihood that a given
variable will fall within a specified range. That is we would like some
measure of confidence that a measured quantity is likely to fall within a

312 APPENDIX D. STATISTICS REMINDER

certain range. If someone quoted the statistic that a variable, x, has a
95% confidence interval of x £+ Ax, that would mean that if we repeatedly
measured this variable, that 95% of the time, the measured value would lie
between x + Ax and x — Ax. If the distribution of x is normal, then the
95% interval is at 1.96 o. For example, if we know that a variable has a
mean value of 2.5 and a standard deviation of 0.6, then the 95% confidence
interval is given by:

x£19%0c=25£196x06=25+03

Therefore if we were to take one more measurement, we could state that
the value of the measurement will lie between 2.2 and 2.8 95% of the time.
We can also say that 1 in 20 (5%) of the time the variable will lie outside
this range by chance.

Alternatively we could make not one measurement but obtain an entire
new sample of measurements and compute the mean of the new sample.
Given a new sample, what can we say about the likely value fot the mean
of that sample? Given the original standard deviation we could state that
the mean of a new sample will have a confidence limit of:

X959 £ 1.96 SE;

which is a more useful statistic to obtain. That is, the mean of the new
sample will have a mean =+ the standard error. For example the mean
for a sample of nine data points is 4.0 with a standard deviation of 2.0.
Given this information the standard error can be computed to be: SEz =
o//n = 2/3 = 0.66667. Therefore the 95% confidence internal on the
mean is:

X959, £ 1.96 x 0.66667 = 4.0 & 1.31

That is if we did draw a new sample then 95% of the time the mean would
lie within the above range.

D.7 Bootstrapping

Let us assume we wish to estimate the 95% confidence interval for the
mean of a population. The problem is we don’t have the population, only

D.7. BOOTSTRAPPING 313

a sample from the population. We can use bootstrapping to get an estimate
for the confidence interval, or more precisely we can use Bootstrapping to
generate a distribution that resembles the population from which we can
estimate a confidence interval. Bootstrapping is the act of generating the
distribution by sampling. Let us assume for argument sake that our sample
from the population is:

4,5,7,3,7,1

We will now resample with replacement from the original sample. Re-
placement means not removing the sampled value from the sample set,
this means that it is possible to sample the same value again. An example
of a bootstrap sample is:

7,3,1,4,1,7

The new sample should have the same number of elements as the original
sample. We now create many hundreds of similar samples, lets say we
create 200 samples in this way. For each sample we will compute the
mean so that we will have 200 means. That is our bootstrap sample of
means. The bootstrap has now essentially finished.

At this point we can compute some interesting statistics from our 200
means. For example, what is the 95% confidence interval for the mean
of the original population? If we assume that our sample of means has the
same statistical structure as the population then we can use the 200 means
to compute the 95% confidence interval. To compute the 95% confidence
interval for the means, we must first rank the means in ascending order and
then use the 97.5% and 2.5% percentiles as the interval, that is the middle
95% of all bootstrap sample means.

Listing D.1 show some Jarnac code to bootstrap a sample of 30 taken from
the normal distribution.

sampleSize = 30;
s = vector (sampleSize)
for i = 1 to sampleSize do
s[i] = stats.gauss(0.2, 1);

p=[; n = 10000;
means = vector (n);

314 APPENDIX D. STATISTICS REMINDER

for k = 1 to n do
begin
1 = vector (sampleSize);
for i = 1 to sampleSize do

begin

r = trunc (rnd (sampleSize)) + 1;
1[i] = slzl;

end;

p-append (1);
means[k] = mean (1);

end;
y = hist (means, -1, 1, 50);
graph (y);

Listing D.1 Bootstrapping Script

Further Reading

1. Bevington, PR, Data reduction and error analysis for the physical
sciences. McGraw-Hill, 1969.

2. Berendsen, Herman JC. A student’s guide to data and error analysis.
Cambridge: Cambridge University Press, 2011.

3. For something different: David Freedman D, Pisani R, Purves R.
Statistics W. W. Norton & Company; 3rd edition, 1998

4. Mandel J. The statistical analysis of experimental data. Dover Pub-
lications, 1984.

5. Manly, BFJ. Randomization, Bootstrap and Monte Carlo Methods
in Biology. Chapman & Hall, 1997.

Copyright © Herbert M Sauro, Wednesday 17" July, 2013 at
3:34pm Introduction to Control Theory for Biologists, Draft (.82,
www.sys-bio.org

Introduction to Jarnac

Jarnac is a Windows 2000/XP/Vista/7 based interactive language for nu-
merical analysis and building models of reaction networks such as metabolic
pathways, signal transduction circuits and gene regulatory networks.

E.1 Quick Start Guide

The main area of user interaction is at the console window, this is located
at the top left of the screen (Figure E.1). This is where you enter com-
mands and instructions for Jarnac to obey. The lower panel is the built-in
editor where you can write or edit script files — a list of commands or pro-
gramming constructs for Jarnac to execute.

Operations can be performed with Jarnac in two ways: you can enter com-
mands at the console for immediate execution, or, you can run Jarnac script
files. At the console you can type things like, sin (pi) + logl0(1000),
hit return and Jarnac will return an immediate answer to you. On the other
hand one may have a whole set of things to calculate in which case it
might be convenient to put all the instructions into a file, a script file, and
let Jarnac run the script file.

315

316 APPENDIX E. INTRODUCTION TO JARNAC

£ Jamac Version 3.21a Interactive Mode By
File Edit Search Templates Options View Run Tools SBW Help
Editor x| "
o 05 R B R R 6 D B A R e E Show line numbers £
" bistable3jan X |untitled5322jan X |untitled9405an % led79%49jan X |Chapter jan % an
8
)
#n
v
4\
z

Console x

ChapterSReverseEngineerNetwork jar Insert SBW Status:

Figure E.1 Screen shot of Jarnac. Lower panel interactive console, upper
panel, model editor.

To load and run a model the following instructions can be followed (Fig-
ure E.2):

1. Load a model into the editor by using the load button

2. Select the run button in the editor tool bar

For example the following model might be stored in a file called mymodel. jan.

p = defn cell
$Xo -> S1; vo;
S1 -> S2; k1*S1 - k2%S2;
S2 -> $X1; k3*S2;

end;

p.vo = 1;

E.1. QUICK START GUIDE 317
Jarnac Version 3.21a Interactive Mode [
Fle Edit Search Templates Options View Run Tools SBW Help
; »
Load model into editor = e
e 5 H B B R G| @® M9 ey X ey EH D
Run button jan_x % | shmiT, i A untitleds3z2jan % an

Editor window

moA S8 E S

Console window

ChapterSReverseEngineerNetwarkjar Ln: 10, Col: 21

Insert

SBW Status:

Figure E.2 Screen shot of Jarnac with main elements labeled.

p-k1 =
p-k3 =

m = p.sim.eval (0, 6, 100);
graph (m);

If this file is loaded into the Jarnac editor and the run button selected, the
screen shot shown in Figure E.3 will be seen.

It is also possible, though perhaps less convenientl, to load and run models
from the console. The following four commands can be executed directly
from the console.

318 APPENDIX E. INTRODUCTION TO JARNAC

#3 Jarnac Version 3.21a Interactive Mode = B ®
File Edit Search Templates Options View Run Tools SBW Help
Editor x|
= O E 8 & B B % B B &9 ¢ > % A e 3 Show line rumbers £
.ﬂ bistable3jan % |untitled5322jan X |untitled3405,jan X | untitled7943,jan X |ChapterSReverseEngineerhetworkjan % an
= defn

]
L‘“:
4 extexapapua]a]
10
z Legend
—_— A
. ——>B
I —e .C

Chapter5ReverseEngineerNetworkjar Ln: 10, Col: 21 Insert SBW Status: T3

Figure E.3 Screen shot of Jarnac with simulation results

run filename Run ascriptfile, eg run calvin

edit filename Load the file, filename, into the editor window

dir Display directory listing of current directory, eg dir
cd path Change current directory, eg cd glycolysis

The run command is used to run Jarnac scripts files. Scripts can be written
using any editor that can save ascii text files, this can include nodepad,
WinEdt or more simply Jarnac’s built-in editor.

E.2. CURRENT DIRECTORY 319

E.2 Current Directory

Jarnac maintains an internal variable called the current directory. All op-
erations involving external files, for example, running script files, opening
export files, saving data objects, etc., will use the current directory as the
search path. The current directory can be examined using the predefined
variable ‘sys.path’. Setting the current directory can be done either by
assigning a new path string to the path variable:

sys.path="c:\MyModels")

or using the system command, ‘cd’, e.g. cd c:\MyModels, note that the
command cd does not require the path to be put in quotes, this is because
cd is a console command rather than a Jarnac language statement (See
Jarnac Command and Language Statements).

E.3 Simple Examples from the Console Window

In the following console examples, the symbol, -> is the Jarnac prompt.
Everything after the -> is user input, every line without a -> is Jarnac
output. It is assumed that at the end of each line the user has hit the return
key.

->sys.path

c:\MyModels
->gys.path="c:\MyModels\liver"
->sys.path

c:\MyModels\liver

->

E.3.1 Numeric handling

->1/2 + 10
10.5
->a = 2

320 APPENDIX E. INTRODUCTION TO JARNAC

->axb
15
->sin (axb)
0.650287840157117
->m = {{1,2,3},{7,5,2},{8,7,6}}
->1/m
{{-1.778 -1 1.222}%F
{ 2.889 2 -2.111}
{ -1 -1 1}}
->mt = tr (m)
->inv(mt) = 1/mt
->
->println "pi times 2 is'", pi*2;
pl times 2 is 6.2832

E.3.2 Type of Data

Jarnac supports a variety of different data types, these can be split into two
groups, primitive and object types. Primitive types are generally faster to
manipulate compared to object types; however object types posses a much
richer array of abilities and representation.

E.3. SIMPLE EXAMPLES FROM THE CONSOLE WINDOW

321

Primitive Types

Integer
Float

Complex
String
Boolean
Vectors
Matrices
Code Types

Complex Types

Lists
Networks

i/o Objects
User Functions
Graphs

signed 32-bit integer eg. 5, 34586
double precision, eg. 1.23454, 0.45,
3.4e-4

double precision complex number, eg 2 +
4i, 71 1 - 3i

"a string"

True or False

{1,2,3} Elements may be constants or
expressions

{{1,2}, {4,5}} Elements may be constants
or expressions

<at+b>

["xyz", 1.2, xxy, [i,j,k, 1,2,3,4]]
defn cell [J1] S1 -> S2; vi1; [J2] S2 ->
S3; S2xkl; end

File, Console or Printer streams

eg function test (x) return pi*x; end;
Data visualisation objects

Examples of different data type assignments:

a = 1.2345;

i=99; j=288; k=77;

c =4 + 7.4i;

d = 401i;

m = {{i,2,3}, {j,5,6}, {k,8,9}};
v = vector (1000};

Name = "Jim Smith";

Spock = True;

f = <sin (x) + cos (1.2*y)>;
Shoppinglist = ["Bread", "Newspaper", "Olives"];
function MyFunc (x, y) return sin(x)*cos(y); end;

322 APPENDIX E. INTRODUCTION TO JARNAC

E.3.3 Integers

Integers are stored as 32 bit signed values, that is a double word. Inte-
gers have the numeric range -02147483648 to 2147483647. A number
of functions exist to convert integers to and from string format, StrToInt
and IntToStr. If you wish to control the conversion of an integer to it’s
string representation, use the Format function.

E.3.4 Floats

Floats represent the usual scientific floating point number. In Jarnac they
are implemented using IEEE standard double format. That is each float
requires eight bytes of storage. The range which a float covers is 5.0 x
1079324 t0 1.7x 103°8 and each number has 15 to 16 digits of significance.

Jarnac also has built-in two floating point constants, NAN and Inf, these
represent ‘Not a Number’ and ‘Infinity’ respectively, as defined in the
IEEE standard.

E.3.5 Complex Numbers

The native float type for Jarnac is actually the complex type. A complex
number is defined as pair of floating point numbers, a real part and an
imaginary part. Both numbers have the same restrictions on their range as
a normal floating point number. The imaginary part of a complex number
is indicated by a’i’ or ’j’ placed immediately after the number, for example

0.1i
3.1415j

To create a complex number with a nonzero real part, add a floating point
number to it, e.g.

3+41i

Like integers and floats, normal arithmetic can be done with complex num-
bers, for example:

E.3. SIMPLE EXAMPLES FROM THE CONSOLE WINDOW 323

->x = 3+41 + 3-71
->println x
(6-31)

->

E.3.6 Boolean

Boolean types occupy one byte and can have only one of two states repre-
senting true or false. Two built-in constants, False and True are provided
to allow boolean types to be set and tested.

E.3.7 Strings

Literal strings are indicated using the double quote character, ", thus,
"Hello World" is a literal string. If you wish to include the double-quote
itself as part of the literal string, use two double-quote characters in suc-
cession. For example the string """Hello""" yields "Hello".

The escape character, \’, may be used to insert a limited number of special
characters into a literal strings. These are listed below:

\\ Yields the character ‘\’

\n Carriage Return/Line Feed (newline)
\r Carriage Return

\f Line Feed

\t Tab character

E.3.8 Code Types

Code types are a way of converting simple algebraic expressions into Jarnac’s
internal code representation. Code types start with the symbol < followed
by the expression, finishing with a closing >.

For example, the following are code type expressions:

324 APPENDIX E. INTRODUCTION TO JARNAC

f = <axb + ¢>
TotalFlux = <p.J1 + p.J2 + p.J3>
FuncToPlot = <sin(x)*2.3 + cos(y)*5.6>

When a code type is defined, the <. . . > construct returns a reference to the
code, that is a reference to the internal code that Jarnac generates when it
parses the expression. This is in contrast to a normal expression which is
evaluated immediately and the result returned to the left hand side of the
assignment.

Thus the expression, 2+3, returns the value 5, while the expression, <2+3>
returns a reference to the internal Jarnac code which represents the opera-
tion 2+3.

If you wish to evaluate a code type, use the eval function. The eval
function takes a single argument which is the code type expression. The
evaluation of the code occurs within the current symbol context. If Jarnac
finds that it cannot locate a particular symbol in the code type expression, a
runtime error is generated. When evaluating code types within user func-
tions, Jarnac uses the user function symbol context to evaluate the code
type.

Like any other data type it is possible to pass code type expressions or vari-
ables which reference code types, to user defined functions. Code types are
an important data type in a number of numerical analysis situations, in par-
ticular they are important during simulation runs and when a user requests
the computation of metabolic control analysis coefficients.

f = <x*x>;
x = 3.4;
println eval (f);

Side Note: The eval method will also accept string arguments in addi-
tion to code types. This means one can evaluate arbitrary expressions at
runtime, for example:

function PlotMe (g, f)
x =0;

E.3. SIMPLE EXAMPLES FROM THE CONSOLE WINDOW 325

for i =1 to 50 do
begin
g.Markat (x, eval (f), 0);
x=x+ 0.1;
end;
end;

g = newgraph;

PlotMe (g, "sin (x)");
ReadKey;

g.close;

E.3.9 Matrices

Jarnac has built-in support for Matrices, that is rectangular arrays of num-
bers with labeled rows and columns. Matrices can be entered in two ways,
either by literal declaration or by using one of the built-in matrix functions.

Literal Declaration:

m={ {1, 2, 3}, {4,5,6}, {7,8,9} }
m={{i, i+1}, {j, j+1}, {k, k+1} }
m = {{}} // Empty matrix

Literal declarations my contain constants or expressions which resolve to
integers, floats or complex numbers. The comma is used to delimit indi-
vidual rows and elements and brackets are used to delimit rows. There are
also a number of functions that will generate matrices, they include (all
number pairs indicate rows and columns):

m = matrix (5,5) // Create an empty 5 by 5 matrix
m = ident (5) // Create an identity matrix of size 5
m = ones (3,4) // Create a matrix filled with ones of size 3 by 4

326 APPENDIX E. INTRODUCTION TO JARNAC

The simulation methods:
m = p.sim.eval (0, 10, 100);

return time course data in the form of a matrix.

There are a few ways to access elements and sections of a matrix. Ac-
cessing a single element is done using the indexing syntax, for example,
m[2,3] means access the value at the second row and third column. Note
that matrix indexing starts from one.

m[1,1]
m[2,2]

1.234;
m[1,1] + 10;

Individual rows and columns or groups or rows and columns can be ac-
cessed either using specific methods or slicing. The following methods
can be used to extract specific rows and columns from a matrix m:

o]
1]

getColumn (m, 2); // get column 2
getRow (m, 4); // get row 4

e
1]

To extract groups of rows and columns use the following methods:

// Extract first and second column

x = getColumns (m, [1,2]);

// Extract 2nd, 4th and 6th columns

x = getColumns (m, [2,4,6]);

// Similar syntax applies to extracting rows,
// extract 5th and 4th rows.

x = getRows (m, [5,4]);

It is also possible to use Matlab type slicing of matrices which is less ver-
bose than the methods above. For example:

// Extract rows 1 to 2 and columns 3 to 4 (results in a 4 by 4 matrix)
x = m[1:2,3:4]

E.3. SIMPLE EXAMPLES FROM THE CONSOLE WINDOW 327

// Extract all rows in columns 2, 3 and 4

x =m[:,2:4]

// Extract all rows in column 3 to the last column in the matrix
x = m[:,2:columns (m)]

// Extract all columns in row 2 to the last row in the matrix

x = m[2:rows (m),:]

An important distinction between Jarnac matrices and matrices in other
programming languages, is that Jarnac matrices are labeled. That is the
rows and columns have labels. This means that any manipulations that
extracts rows and columns or exchange rows and column will also result in
appropriate changes to the row and column labels. For example, consider
the matrix:

m = {{1,2}, 3,4}};
println m;

C1 Cc2
R1{{ 1 2}
R2 { 3 41}

This matrix has the default row and column labels. If we transpose this
matrix using the tr () method we get:

m = tr (m);
println m

R1 R2
Cc1{{ 1 3}
c2 { 2 41}

Column and row labels can be renamed using the setRowName and setColumnName
methods, for example:

setRowName {m, 2, ’A New Label’);

relabels the second row of matrix m with a new string.

328 APPENDIX E. INTRODUCTION TO JARNAC

E.4 Running Script Files

You can write script files using any basic ascii editor but more conveniently
you can use the built-in editor that comes with Jarnac. To start a new script
file click on the new button in the editor tool bar. Now enter your com-
mands into the lower panel, for example enter the following lines (Note
the semicolons at the end of each line):

H = 1E-4;
pH = -Logl0 (H);
println "The pH is ", pH;

Now save the file to some convenient location using the save-as button in
the tool bar, and call the file myfile. jan. To run this script you can either
type the command run myfile at the console or click on the run button
in the tool bar.

Loading existing script files into the editor is simply a matter of typing
edit myfile atthe console or clicking on the load file button on the editor
tool bar. Save any edit by using the save button on the editor tool bar.

Script files should have the extension . jan. Commands such as run and
edit will search for file names of the form x. jan. This means it is possi-
ble to omit the extension and simply use run x and Jarnac will implicitly
add the extension. Thus to edit a file called mymodel. jan one can type
the abbreviated form, edit mymodel — although edit mymodel. jan is
equally acceptable — and Jarnac will implicitly add the . jan extension for
you. This is simply a convenience for the user.

E.4.1 Commenting Code

Like all programming languages it is possible to add comments to a Jarnac
script. Two types of comment are supported:

1. C++ style comments as in:

// This is a comment

E.5. REACTION NETWORK MODELS 329

2. C style comments as in:

/* Use C style comments when you have multiple
lines to comment.

*/

E.5 Reaction Network Models

The main purpose of Jarnac is to make it straight forward to specify com-
plex reaction networks using a familiar chemical reaction notation.

A chemical reaction can be an enzyme catalyzed reaction, a binding re-
action, a phosphorylation, a gene expressing a protein or any chemical
process that results in the conversion of one of more species (reactants)
to a set of one or more other species (products). In Jarnac, reactions are
described using the notation:

A+ ... >P+ ...

where the reactants are on the left side and products on the right side. The
left and right are separated by the -> symbol. For example:

A ->B

describes the conversion of reactant A into product B. In this case one
molecule of A is converted to one molecule of B. The following example
shows non-unity stoichiometry:

2 A->38B

which means that two molecules of A react to form three molecules of B.
Bimolecular and other combinations can be specified using the + symbol,
that is:

2A+B->C+3D

tells us that two molecules of A combine with one molecule of B to form
one molecule of C and three molecules of D.

To specify species that do not change in time (boundary species), add a
dollar character in front of the name, for example:

$A + B -> C

330 APPENDIX E. INTRODUCTION TO JARNAC

means that during a simulation A is fixed.
Reactions can be named using the syntax J1:, for example:
Ji: A+B ->¢C

means the reaction has a name, J1. Named reaction are useful if you want
to refer to the flux of the reaction; Kinetic rate laws come immediately after
the reaction specification. If only the stoichiometry matrix is required, then
it is not necessary to enter a full kinetic law, a simple ... -> S1; v; is
sufficient. Here is an example of reaction that is governed by a Michaelis-
Menten rate law:

A -> B; VmxA/(Km + A);

Note the semicolons.

Here is a more complex example involving multiple reactions:

p = defn Branch

MainFeed: $X0 -> S1; Vm*xX0/(Km + XO0);

TopBranch: S1 -> $X1; Vm1#S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2%S1/(Km2 + S1);
end;

Note that there is no need to pre-declare the species names shown in the re-
actions or the parameters in the kinetic rate laws. Strictly speaking, declar-
ing the names of the floating species is optional, however this feature is
for more advanced users who which to define the order of rows that will
appear in the stoichiometry matrix. For normal use there is no need to pre-
declare the species names. To predeclare parameters and variables see the
example below:

p = defn Branch

ext Xo, X1, X2; // Boundary species
var S1; // Floating species

MainFeed: $X0 -> S1; Vm*X0/(Km + XO0);
TopBranch: S1 -> $X1; Vm1#S1/(Km1 + S1);

E.5. REACTION NETWORK MODELS 331

BottomBranch: S1 -> $X2; Vm2%S1/(Km2 + S1);
end;

Every model is assigned to a variable, in this case, named ‘p’. To reference
model properties and methods, the property or method must be proceeded
with the name of the model, eg p.S1 = 2.3;

A model declared as in the above example will be converted into a set of
differential equations. For example consider the following model:

p = defn cell
$Xo -> S1; +vi;
S1 -> 52; v2;
S2 -> $X1; v3;
end;

will be converted into:

dS
P
dS;
P

Note that there are no differential equations for X, and X, this is because
they are fixed and do not change in time. If the reactions have non-unity
stoichiometry than this is taken into account when the differential equa-
tions are derived.

E.5.1 Initialization of Model Values

Initializing a model is very simple:

p.X0
p-X1
p-Si

. we

1l
O O Ww

-

332 APPENDIX E. INTRODUCTION TO JARNAC

(@}
—

p-Vm = 12; p.Km =
p-Vml = 14; p.Kml = 0.4;
p-Vm2 = 16; p.Km2

Il
w
IS

E.5.2 Time Course Simulation

There are two methods for evaluating the time evolution of a reaction net-
work model, these are, p.sim.0OneStep and p.sim.Eval. OneStep is
used to compute a single time step between two time points while Eval is
used to compute the model over a range of time steps. The most commonly
used call is the Eval method. The simplest way to call it is to write:

m = p.sim.eval (0, 10, 100);

This call will run a time course simulation starting at time zero, ending
at time 10 units and generating 100 points. The results of the run are
deposited in the matrix variables m. At the end of the run the m matrix
will contain columns corresponding to the time column and all the species
concentrations. If more control is required over what the columns of the
m matrix should be, the Eval method takes an additional argument, a list
of terms that will represent the columns of the matrix. For example the
following call:

m = p.ss.eval (0, 10, 1000, [<p.S1>])

will return a matrix 1000 rows deep and one column wide that corresponds
to the number of items in the fourth argument. The fourth argument is a
list containing the desired outputs. A number of examples include:

m = p.ss.eval (0, 10, 1000, [<p.S1>, <p.J1>, <p.J2>, <p.J2>]);
m = p.ss.eval (0, 10, 1000, [<p.S1>, <p.J1+p.J2>]1);

p-ss.eval (0, 10, 1000,

[<p.Time>, <p.S1>, <p.S1*Logl0 (p.J1)>]);

8
I

Note that the special variable Time is available which represents the inde-
pendent time variable in the model. The first argument equals the start time
point, the second argument the end time point and as mentioned before the
third argument represents the required number of output points.

E.5. REACTION NETWORK MODELS 333

To visualize the output in the form of a graph one simply needs to pass the
matrix variable returned by sim.eval to the command, graph. Thus:

m = p.ss.eval (0, 10, 1000,
[<p.Time>, <p.S1>, <p.J1>, <p.J2>, <p.J3>]1);
graph (m)

or if only the graph is required:

graph (p.ss.eval (0, 10, 1000,
[<p.Time>, <p.S1>, <p.J1>, <p.J2>, <p.J3>]));

To selectively graph particular items from the generated matrix use the
syntax shown in the following example:

graph (m, [2, 3]);
graph (m, [1, 2, 4]);

The list argument indicates which columns of m to graph. The first column
specified in the list is always considered the independent variable (x axis).
This means that the statement, graph (m, [1,2,3,4]) is equivalent to
graph (m).

For more control, user can use the OneStep method. OneStep takes two
arguments and returns a double value.

tNext = p.sim.OneStep (tStart, tStep)

OneStep takes the start time point of the simulation and the step size re-
quired to simulate over. For convenience OneStep returns the new time
value, i.e. tStart + tStep. Example:

t = 0;

repeat
t = p.sim.OneStep (t, 0.1);
println p.S1;

until t > 10;

334 APPENDIX E. INTRODUCTION TO JARNAC

E.5.3 Applying Perturbations to a Simulation

Often in a simulation we may wish to perturb a species or parameter at
some point during the simulation and observe what happens. One way to
do this in Jarnac is to carry out two separate simulations where a perturba-
tion is made when in between the two simulations. For example, let’s say
we wish to perturb the species concentration for a simple two step path-
way and watch the perturbation decay. The first thing we do is simulate the
model for 10 time units, this gives us a transient and then a steady state.

p = defn cell
$Xo -> S1; kixXo;
S1 -> $X1; k2*S1;
end;

p.-Xo = 10; p.k1 = 0.3; p.k2 = 0.15;
ml = p.sim.eval (0, 10, 50);

We then make our perturbation as follow:

p.S1 = p.S1 * 1.5;

which increases S1 by 50%. We then carry out a second simulation:
m2 = p.sim.eval (10, 20, 50);

Note that we set the time start of the second simulation to the end time of
the first simulation (10). Once we have the two simulations we can com-
bine the matrices from both simulations using the augment rows method:

m = augr (ml, m2)
Finally, we plot the results.
graph (m);

For those who use I&TgXand pgfplot, it is possible to generate pgfplot code
by using the commands:

str = exportPGFPlot (m);
copyToClipboard (str);

E.5. REACTION NETWORK MODELS 335

S1

10 - A

0 | | | | | | |
0 2 4 6 8§ 10 12 14 1

Time

|
6 18 20

Figure E.4 Plotting a perturbation in S7.

The copyToClipboard command makes it easy to paste the code into a
document.

E.5.4 Additional Plotting Commands

In the last section the graph function was used to plot data held in a matrix
including the ability to selectively plot specific columns from the matrix.
Here moer detail will be given on the graph function together with other
function that can be used in plotting graphs.

The graph function can take a number of arguments. The first argument is
always the matrix of data to plot. The next two arguments are optional and
are represented as lists. One contains the columns to plot, as we have seen
before, for example, graph (m, [1, 3, 4]); will plot columns 3 and 4
versus column 1. The second optional argument can be used to specify the
color of the individual curves. For example:

graph (m, [1,3,4], ["OrangeRed", "LightSeaGreen"]

will plot two curves from columns 3 and 4 where data from column 3 will
be plotted in OrangeRed and the data from column 4 plotted in LightSea-
Green. The complete list of colors is shown in Figure E.5 and can be

336

APPENDIX E. INTRODUCTION TO JARNAC

viewed by looking at View in

Palette.

the main Jarnac menu and selecting Color

{5 Graphing Color Palette =N Boh =
red blue green purple
black fushsia olive navy
velow gray teal silver
lime -]' maroon aqua aream
shyblue maneygreen whice Snow
Flaralhite LavenderBlush OldLace Ivery
Cornsik Beige Antiqueswhite wheat
AliceBlue Ghostwhite Lavender Seashel
Lightvellow Papayawhip Navajaihice Maccasin
Burlywaod aaure Mintcream Honeyder
Linen Lemanchiffon ElanchedAlmond Bisque
PeachPLT Tan vellaw Darkorange
Red - Darkied - Maroon - Indianked
Salmon Coral Gold Tomato
Crimson - Brown - Chacalate - sandyBrown
Lightsalmon LightCoral Crange OrangeRed
Firebrick - SaddleBrown - Sienna - Pery
Darksalmon RosyBrown PaleGoldenrod LightGeldenrodvello
Olive: |] ForestGreen - Greentellow Chartreuse
LightGreen Aquamaring Seatreen GolderRod
khaki OliveDrab - Green velowsreen
LannGreen PaleGreen MediumAquamarine Mediumseatreen
DarkGoldenRed Darkkhali Darkolivedreen - Darkgreen
LimeGreen Lime Springareen MediumSpringGreen
DarkseaGreen LightseaGreen PaleTurquaise UghtCyan
LightBlue LightskyBlue CornFlowerElug - DarkBlue -
Indign - MedimTurquaise Turquaise Aqua
PovderBlue skyBlue RoyalElue Mediumelue
MidnightElue DarkTurqueise Cadetlue DarkCyan
Teal DeepskyBlue Dodgertlue Blue
Havy Darkiolet Darkorchid Fuchsia
DarkiMagenta MedumivicletRed PalevicletRed { Blueviclet
Mediumorchid MediumPurple Purple i DeepPink
LightPink, viglet Orchid Plum
Thistle HotPink. Pink LightsteslElue
Medimslateslus LightslateGray White Lichtarey
Gray SteelBlue SlateBlus SlateGray -
WhiteSmoke Siver DimGray MistyRose
Darkslateiue - Darkslategray - Gainsbora DarkGray

Click a calor to copy s name intothe cipboard Selected Color: Nore

Figure E.5 Plotting Palette.

For plots that display many curves a legend can get in the way, the function
displayLegend (truelfalse) can be use to turn on and off the legend
display.

By default the plotting panel autoscales the axes. Often this is the appro-
priate thing to do but if the simulation data starts above the zero axis the
autoscaling will also start the y axis above the zero axis. This behavior
is sometimes inappropriate. Therefore a set of functions are provided to
set the axes limits, these include, individual settings and a built setting
function:

E.5. REACTION NETWORK MODELS 337

setYAxisMin (ymin);
setYAxisMax (ymax);
setXAxisMin (xmin);
setXAxisMax (xmax);

// To set axies limit using one call for he plotting window
setAxes ({0, 10, 0, 20})

Is is also possible to switch off autoscaling using the function:

setAutoScale (truel|false)

E.5.5 Multiple Plots

It is possible to use more than one plotting window at any one time. By
default one plotting window is assigned and it used all the time unless
another window is explicitly created. To create a new plotting window,
use the figure() command:

n = figure()
The command returns the plotting window number. This number can be
used later to refer to the window. The default window is given the num-

ber zero. To focus all graphing commands to a specific plotting window,
include the window number with figure. For example:

figure(n)

will focus future graph command on window 7.

E.5.6 SubPlots

The normal plotting window only plots one set of axes. It is possible how-
ever to specify any number of axis in a given plotting window. To do this
use the subplot command. For example, the following command will cre-
ate a plotting window containing six subplots in a two by three array:

338

APPENDIX E. INTRODUCTION TO JARNAC

subpot (2, 3, 1)

The third argument in the call specify the current subplot where all graph
commands will plot their data. subplots are numbers from one, so that
the subplot command subplot (2,3,1) means that subsequent calls to
graph() will result in plots appearing in the first panel. On the other hand,
the command subplot (2,3,4) means that subsequent calls to graph()
will result in the plot appearing in the fourth subplot. Figure E.6 was
generated using the script below:

for i =1 to 6 do
begin
subplot (2, 3, 1);

displaylegend (false);

graph (urndv(50));
end;

%3 SubPlot Wind

Subplot: 5 -

Q2

0.5

05

0.5

=
=
~
=

(o {or (or]
1.0 1.0 1.0
0.5 05 05
0.0 T T T 0.0 T T 0.0 T T
L] 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure E.6 Screen shot of a subplot window with six subplots.

E.5. REACTION NETWORK MODELS 339

E.5.7 Steady State and Metabolic Control

To evaluate the steady-state (make sure the model values have been previ-
ously initialized) enter the following statement at the console.

->p.ss.eval

This statement will return a value indicating how effective the computation
was, essentially it returns the norm of the rate of change vector (i.e sqrt
(Sum of dydt)). The closer this is to zero the better the approximation to
steady state.

Once a steady state has been evaluated, the values of the metabolites will
be at their steady state values, thus S1 will equal the steady state concen-
tration of S1.

The fluxes through the individual reactions can be obtained by either ref-
erencing the name of the reaction (eg J1) or via the predefined rate vector
rv[] which is part of the model object. The advantage to using the rate
vector is that the individual reaction fluxes can be accessed by indexing the
vector (see example below).

->println p.J1, p.J2, p.J3

3.4,

->for i = 1 to 3 do println p.rv[i]
3.4,

->

To compute control coefficients use the statement:
cc (Dependent Measure, Independent parameter)

The dependent measure is an expression usually containing flux and metabo-
lite references, for example, p.S1, p.S1+p.S2, p.J1. The independent
parameter must be a simple parameter such as a Vmax, Km, ki, boundary
metabolite (X0) or a conservation total such as CSUMI1. In the current
release it is not yet possible to use a floating metabolite as an independent
parameter. Examples include:

p-cc (Kp.J1>, p.Vmax1)

340 APPENDIX E. INTRODUCTION TO JARNAC

.cc (kp.J1>, p.Vml) + p.cc (<p.J1>, p.Vm2)
.cc (Kp.J1+p.J2+p.J3>, p.Vmax1l)

.cc (<p.J1>, p.X0)

.cc (<p.J1>, p.CSUM1)

‘o ‘o 'O ‘O

To compute elasticity coefficients use the statement:
ee (Reaction Name, Parameter Name)

For example

p.ee (<p.J1>, p.X0)
p.ee (<p.J1>, p.S1)

Since cc and ee are built-in functions they can be used alone or as part of
larger expressions. thus it is easy to show that the response coefficient is
the product of a control coefficient and the adjacent elasticity by using:

R = p.cc (<p.J1>, p.X0)
println R - p.cc (<p.J1>, p.Vm) * p.ee (<p.J1>, p.X0)

To obtain the conservation matrix for a model use the model method,
conserve.

->p=defn cycle [J1] E + S1 -> v;
[J2] ES -> E + S2; v;
[J3] S2 -> S1; v; end
->p.conserve
E S1 ES S2
ci{{o 1 1 1}
c2{1 0 1 0}
->

The result given above indicates that the conservation relations, S1 + ES
+ S1 and E + ES exist in the model. As a result, Jarnac would gener-
ate two internal parameters CSUM1 and CSUM2 corresponding to these two
relations.

E.6. GENERATING SBML AND MATLAB FILES 341

E.5.8 Other Model Properties of Interest

There are however a number of predefined objects associated with a reac-
tion network model which might be of interest. Of particular interest are
the stoichiometry matrix, sm, the jacobian matrix, jac and the rate vector
rv which we have seen before. These are returned to the user as matrices
and can thus be treated like any other matrix type.

println p.sm

println p.jac

println p.rv

println p.xml2

println p.xml2("mymodel.xml")

The jacobian is evaluated at the current state of the model, be it in steady
state or not. The xm12 calls can be used to generate standard SBML for-
matted models (Level 2, version 1). p.xm12 will display the SBML to the
screen and p.xml2 ("mymodel.xml") will save the SBML to a file in the
current directory.

E.6 Generating SBML and Matlab Files

Jarnac can import and export standard SBML [48] as well as export Matlab
scripts for the current model. To load a SBML model, select the load
SBML model button (Figure E.7). For saving either SBML or Matlab
files, the model must be run at least once in order to load the model into
memory. Once loaded into memory the save to SBML or save to Matlab
buttons can be selected (Figure E.7).

E.7 Exercise

Figure E.8 shows a two gene circuit with a feedforward loop. Assume the
following rate laws for the four reactions:

342

APPENDIX E. INTRODUCTION TO JARNAC

Load SBML Mode| =———-
Save SBML Mode| ——pr 3

Save Matlab Script =—»

9 Jamac Version 3.21a Interactive Mode o

Ele Edt Search Templates Options Yiew Run Tools SBW Help

o0 5 HE B A 4 LR A9 XA H

fitled9405jan 3 | untitied’49,an X | ChapterSReverseEngineerNetworkjan X

ChapterSReverseEngineesNetwork,ai Insert

SBW Status:

Figure E.7 Screen shot of Jarnac showing buttons to load and save SBML

and Matlab files.

V1 = leo
Uy = kle
V3 = k3X0

Vg4 = k4X1X2

Assume that all rate constants are equal to one and that X, = 1. Assume
also that X, is a fixed species.

1. Create a Jarnac script that could be used to model this system.

2. Run a simulation of the system from O to 10 time units.

3. Next change the value of X, to 2 (double it) and rerun the simulation
for another 10 time units from where you left off in the last simulation.
Combine both simulations and plot the result, that is time on the x-axis
and X, and x, on the y-axis.

E.7. EXERCISE 343

V2
| _E.J»QH -
v
Xo !
|_>:I;2 —
Uy
Us

Figure E.8 Two gene circuit with feedfoward loop.

4. What you see?
5. Write out the differential equations for x; and x».

6. Show algebraically that the steady state level of x; is independent of
XO.

344 APPENDIX E. INTRODUCTION TO JARNAC

References

[1] Alon, U. 2006. An Introduction to Systems Biology: Design Prin-
ciples of Biological Circuits (Chapman & Hall/Crc Mathematical and
Computational Biology Series). Chapman & Hall/CRC.

[2] Aparicio, O., Joseph V Geisberg, and Kevin Struhl. 2004. Curr Protoc
Cell Biol Chapter 17:Unit 17.7.

[3] Barabasi, A. L., and Z N Oltvai. 2004. Nat Rev Genet 5 (2):101-113.

[4] Barnett, V., and Toby Lewis. 1994. Outliers in statistical data, vol. 3.
Wiley New York.

[5] Bennett, B. D., Elizabeth H Kimball, Melissa Gao, Robin Osterhout,
Stephen J Van Dien, and Joshua D Rabinowitz. 2009. Nature chemical
biology 5 (8):593-599.

[6] Bergmann, F., and H.M. Sauro. 2006a. title :1637-1645.

[7] Bergmann, F. T., and H. M. Sauro. 2006b. http://sys-bio.org/
sbwlWiki.

[8] Bergmann, F. T., R. R. Vallabhajosyula, and H. M. Sauro. October
2006. Current Proteomics 3:181-197(17).

[9] Bevington, P. R., and D Keith Robinson. 1969. Data reduction and
error analysis for the physical sciences, vol. 2. McGraw-Hill New York.

[10] Bhalla, U. S. 2002. Methods Enzymol 345:3-23.

[11] Biondi, E. G., Sarah J Reisinger, Jeffrey M Skerker, Muhammad Arif,
Barrett S Perchuk, Kathleen R Ryan, and Michael T Laub. 2006. Nature
444 (7121):899-904.

345

http://sys-bio.org/sbwWiki
http://sys-bio.org/sbwWiki

346 REFERENCES

[12] Blinov, M. L., J R Faeder, B Goldstein, and W S Hlavacek. 2004.
Bioinformatics 20 (17):3289-3291.

[13] Boahen, K. 2005. Scientific American 292 (5):56-63.

[14] Bode, A. M., and Zigang Dong. 2004. Nat Rev Cancer 4 (10):793—
805.

[15] BRETT, D., H. POSPISIL, J. VALCARCEL, J. REICH, and
P. BORK. 2002. Nature genetics 30 (1):29-30.

[16] Brilli, M., Marco Fondi, Renato Fani, Alessio Mengoni, Lorenzo
Ferri, Marco Bazzicalupo, and Emanuele Biondi. 2010. BMC Systems
Biology 4 (1):52.

[17] Burns, J. 1969. FEBS Lett 2 Suppl 1:S30-S33.

[18] Burns, J. A. 1971. Studies on Complex Enzyme Systems. PhD thesis
University of Edinburgh. http://www.sys-bio.org/BurnsThesis.

[19] Cash, J. R., and Alan H. Karp. 1990. ACM Trans. Math. Softw. 16
(3):201-222.

[20] Chance, B. 1943. Journal of Biological Chemistry 151 (2):553-577.

[21] Clarke, B. L. 1980. Stability of complex reaction networks., vol. 42
of Adv. Chem. Phys. Wiley, New York.

[22] Cohen, P. 2000. Trends in Biochemical Sciences 25 (12):596-601.

[23] Cohen, S. D., and A. C. Hindmarsh. 1996. Comput. Phys. 10:138—
—143.

[24] de Graauw, M., (ed.), 2009. Phospho-Proteomics, vol. 527 of Meth-
ods in Molecular Biology. Humana Press.

[25] Deckard, A., F T Bergmann, and H M Sauro. 2006. Bioinformatics
22 (23):2966-2967.

[26] Dickson, R. C., and M. D. Mendenhall. , (ed.), 2004. Signal Trans-
duction Protocols, vol. 284 of Methods in Molecular Biology. Humana
Press, 2nd Edition.

http://www.sys-bio.org/BurnsThesis

REFERENCES 347

[27] Dormand, J. R., and Peter J Prince. 1980. Journal of computational
and applied mathematics 6 (1):19-26.

[28] Efron, B., and Robert Tibshirani. 1986. Statistical science :54-75.

[29] Entus, R., B Aufderheide, and H. M. Sauro. 2007. Systems and Syn-
thetic Biology 10.1007/s11693-007-9008-6.

[30] Fields, S., and O Song. 1989. Nature 340 (6230):245-246.

[31] Friedland, A. E., Timothy K Lu, Xiao Wang, David Shi, George
Church, and James J Collins. 2009. Science 324 (5931):1199-1202.

[32] Gama-Castro, S., Verénica Jiménez-Jacinto, Martin Peralta-Gil, Al-
berto Santos-Zavaleta, Moénica 1 Pefaloza-Spinola, Bruno Contreras-
Moreira, Juan Segura-Salazar, Luis Muifiiz-Rascado, Irma Martinez-
Flores, Heladia Salgado, César Bonavides-Martinez, Cei Abreu-
Goodger, Carlos Rodriguez-Penagos, Juan Miranda-Rios, Enrique
Morett, Enrique Merino, Araceli M Huerta, Luis Trevifio-Quintanilla,
and Julio Collado-Vides. 2008. Nucleic Acids Res 36 (Database
issue):D120-D124.

[33] Garfinkel, D. 1968. Comput. Biomed. Res. 2:31-44.

[34] Garfinkel, D., L Garfinkel, M Pring, S B Green, and B Chance. 1970.
Annu Rev Biochem 39:473-498.

[35] Gauges, R., U. Kummer, S. Sahle, and K. Wegner. 2006. Bioinfor-
matics 22 (15):1879-1885.

[36] Gavin, A.-C., Patrick Aloy, Paola Grandi, Roland Krause, Markus
Boesche, Martina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja
Bastuck, Birgit Diimpelfeld, Angela Edelmann, Marie-Anne Heurtier,
Verena Hoffman, Christian Hoefert, Karin Klein, Manuela Hudak,
Anne-Marie Michon, Malgorzata Schelder, Markus Schirle, Marita Re-
mor, Tatjana Rudi, Sean Hooper, Andreas Bauer, Tewis Bouwmeester,
Georg Casari, Gerard Drewes, Gitte Neubauer, Jens M Rick, Bernhard
Kuster, Peer Bork, Robert B Russell, and Giulio Superti-Furga. 2006.
Nature 440 (7084):631-636.

348 REFERENCES

[37] Gekas, V., and M. Lopez-Leiva. 1985. Process biochemistry 20
(1):2-12.

[38] Goldberg, D. 1989. Addison Wesley, New York. Eiben AE, Smith
JE (2003) Introduction to Evolutionary Computing. Springer. Jacq J,
Roux C (1995) Registration of non-segmented images using a genetic
algorithm. Lecture notes in computer science 905:205-211.

[39] Goodyear, C., and G.J. Silverman. 2008. Cold Spring Harbor Proto-
cols 2008 (9).

[40] Hedley, W. J., N. R. Melanie, D. Bullivant, A. Cuellar, Yi Ge,
M. Grehlinger, K. Jim, S. Lett, D. Nickerson, P. Nielsen, and H. Yu.
2001. Available via the World Wide Web at http://www.cellml.org.

[41] Heinrich, R., S. M. Rapoport, and T. A. Rapoport. 1977. Prog. Bio-
phys. Molec. Biol. 32:1-82.

[42] Herrera, F., Manuel Lozano, and Jose L. Verdegay. 1998. Artificial
intelligence review 12 (4):265-319.

[43] Hindmarsh, A. C. 1983. In: Stepleman, R. , (ed.), Scientific Com-
puting, p. 55-64. North-Holland, Amsterdam.

[44] Hoefnagel, M., A Van Der Burgt, DE Martens, J Hugenholtz, and
JL Snoep. 2002. Molecular biology reports 29 (1-2):157-161.

[45] Hofmeyr, J. H. 1995. J Bioenerg Biomembr 27 (5):479—-490.

[46] Hofmeyr, J. H., and K. J. van der Merwe. 1986. Comp. Appl. Biosci.
2:243-249.

[47] Hoops, S., S Sahle, R Gauges, C Lee, J Pahle, N Simus, M Singhal,
L Xu, P Mendes, and U Kummer. 2006. Bioinformatics 22 (24):3067-
3074.

[48] Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Ki-
tano, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A.
Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J.
Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L.

REFERENCES 349

Kasberger, A. Kremling, U. Kummer, N. Le NovAngAAire, L. M.
Loew, D. Lucio, P. Mendes, E. D. Mjolsness, Y. Nakayama, M. R.
Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S.
Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wag-
ner, and J. Wang. 2003. Bioinformatics 19:524-531.

[49] Huerta, A. M., H. Salgado, D. Thieffry, and J. Collado-Vides. 1998.
Nucleic Acids Res 26 (1):55-59.

[50] Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki.
2001. Proc Natl Acad Sci U S A 98 (8):4569-4574.

[51] Jeong, H., S. P. Mason, A. L. Barabdsi, and Z. N. Oltvai. 2001. Nature
411 (6833):41-42.

[52] Karp, P. D., I. M. Keseler, A. Shearer, M. Latendresse, M. Krum-
menacker, S. M. Paley, I. Paulsen, J. Collado-Vides, S. Gama-
Castro, M. Peralta-Gil, A. Santos-Zavaleta, M. 1. Pefaloza-Spinola,
C. Bonavides-Martinez, and J. Ingraham. 2007. Nucleic Acids Res 35
(22):7577-7590.

[53] Keseler, I. M., Julio Collado-Vides, Alberto Santos-Zavaleta, Mar-
tin Peralta-Gil, Socorro Gama-Castro, Luis Muifiz-Rascado, César
Bonavides-Martinez, Suzanne Paley, Markus Krummenacker, Tomer
Altman, Pallavi Kaipa, Aaron Spaulding, John Pacheco, Mario Laten-
dresse, Carol Fulcher, Malabika Sarker, Alexander G Shearer, Amanda
Mackie, Ian Paulsen, Robert P Gunsalus, and Peter D Karp. 2011. Nu-
cleic Acids Res 39 (Database issue):D583-D590.

[54] Kirkpatrick, S., D. Gelatt Jr., and Mario P Vecchi. 1983. science 220
(4598):671-680.

[55] Kitano, H., A Funahashi, Y Matsuoka, and K Oda. 2005. Nat
Biotechnol 23 (8):961-966.

[56] Kroeze, W. K., Douglas J Sheffler, and Bryan L Roth. 2003. Journal
of Cell Science 116 (24):4867-4869.

[57] Krogan, N. J., Gerard Cagney, Haiyuan Yu, Gouqing Zhong,
Xinghua Guo, Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta,

350 REFERENCES

Aaron P Tikuisis, Thanuja Punna, José M Peregrin-Alvarez, Michael
Shales, Xin Zhang, Michael Davey, Mark D Robinson, Alberto Pacca-
naro, James E Bray, Anthony Sheung, Bryan Beattie, Dawn P Richards,
Veronica Canadien, Atanas Lalev, Frank Mena, Peter Wong, Andrei
Starostine, Myra M Canete, James Vlasblom, Samuel Wu, Chris Orsi,
Sean R Collins, Shamanta Chandran, Robin Haw, Jennifer J Rilstone,
Kiran Gandi, Natalie J] Thompson, Gabe Musso, Peter St Onge, Shaun
Ghanny, Mandy H Y Lam, Gareth Butland, Amin M Altaf-Ul, Shige-
hiko Kanaya, Ali Shilatifard, Erin O’Shea, Jonathan S Weissman,
C. James Ingles, Timothy R Hughes, John Parkinson, Mark Gerstein,
Shoshana J Wodak, Andrew Emili, and Jack F Greenblatt. 2006. Na-
ture 440 (7084):637-643.

[58] Kuzmic, P. 1996. Analytical biochemistry 237 (2):260-273.

[59] Le Novere, N., Andrew Finney, Michael Hucka, Upinder S Bhalla,
Fabien Campagne, Julio Collado-Vides, Edmund J Crampin, Matt Hal-
stead, Edda Klipp, Pedro Mendes, Poul Nielsen, Herbert Sauro, Bruce
Shapiro, Jacky L Snoep, Hugh D Spence, and Barry L. Wanner. 2005.
Nature biotechnology 23 (12):1509-1515.

[60] Le Novere, N., M. Hucka, H. Mi, S. Moodie, F. Schreiber,
A. Sorokin, E. Demir, K. Wegner, M.I. Aladjem, S.M. Wimalaratne,
et al.. 2009. Nature biotechnology 27 (8):735-741.

[61] Lee, T. I., Nicola J Rinaldi, Franc¢ois Robert, Duncan T Odom, Ziv
Bar-Joseph, Georg K Gerber, Nancy M Hannett, Christopher T Har-
bison, Craig M Thompson, Itamar Simon, Julia Zeitlinger, Ezra G
Jennings, Heather L Murray, D. Benjamin Gordon, Bing Ren, John J
Wryrick, Jean-Bosco Tagne, Thomas L Volkert, Ernest Fraenkel,
David K Gifford, and Richard A Young. 2002. Science 298 (5594):799—
804.

[62] Lloyd, C. M., J R Lawson, P J Hunter, and P F Nielsen. 2008. Bioin-
formatics .

[63] Longabaugh, W. J., Eric H Davidson, and Hamid Bolouri. 2005. De-
velopmental biology 283 (1):1-16.

REFERENCES 351

[64] Luciano,J. S., and R D Stevens. 2007. BMC Bioinformatics 8 Suppl
3:8 Suppl 3: S3.

[65] Macek, B., F. Gnad, B. Soufi, C. Kumar, J.V. Olsen, 1. Mijakovic,
and M. Mann. 2008. Molecular & Cellular Proteomics 7 (2):299.

[66] Mangan, S., S Itzkovitz, A Zaslaver, and U Alon. 2006. J Mol Biol
356 (5):1073-1081.

[67] Manninen, T., E Makiraatikka, A Ylipaa, A Pettinen, K Leinonen,
and M L Linne. 2006. Conf Proc IEEE Eng Med Biol Soc 1:2013-
2016.

[68] Manning, G., D. B. Whyte, R. Martinez, T. Hunter, and S. Su-
darsanam. 2000. Science 298:1912—-1934.

[69] Mardis, E. R. 2007. Nat Methods 4 (8):613-614.
[70] Marquardt, D. 1963. J. Soc. Ind. Appl. Math 11 (2):431-441.
[71] Mattick, J. 2004. Pharmacogenomics J 4:9-16.

[72] Milo, R., S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, 1. Ayzen-
shtat, M. Sheffer, and U. Alon. 2004. Science 303 (5663):1538.

[73] Milo, R., N. Kashtan, S. Itzkovitz, MEJ Newman, and U. Alon. 2003.
eprint arXiv: cond-mat/0312028 .

[74] Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon. 2002. Science 298:824—7.

[75] Monod, J., J Wyman, and J. P. Changeux. 1965. J Mol Biol 12:88-
118.

[76] Montgomery, D. C., Elizabeth A Peck, and G Geoffrey Vining. 2012.
Introduction to linear regression analysis, vol. 821. Wiley.

[77] Miiller, T., N Noykova, M Gyllenberg, and J Timmer. 2002. Mathe-
matical Biosciences 177:147-160.

352 REFERENCES

[78] Myers, C. J., Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Cur-
tis Madsen, and Nam-Phuong D Nguyen. 2009. Bioinformatics 25
(21):2848-2849.

[79] Nelder, J., and R. Mead. 1965. The Computer Journal 7 (4):308.
[80] Olivier, B., and J.L. Snoep. 2004. Bioinformatics 20 (13):2143-2144.
[81] Pahle, J. 2009. Briefings in bioinformatics 10 (1):53—-64.

[82] Park, D. J. M., and B. E Wright. 1973. Comput. Progm. Biomed.
3:10-26.

[83] Pedersen, M., and G. Plotkin. 2008. In: Computational Methods in
Systems Biology . Springer,. in press, http://homepages.inf.ed.
ac.uk/s0677975/papers/1bs.pdf.

[84] Phizicky, E., P1.H. Bastiaens, H. Zhu, M. Snyder, and S. Fields.
2003. Nature 422 (6928):208-215.

[85] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
1988. Numerical Recipies in C. The Art of Scientific Computing. Cam-
bridge University Press, Cambridge.

[86] Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo,
H. Guo, G. Jona, A. Breitkreutz, R. Sopko, et al.. 2005. Nature 438
(7068):679-684.

[87] Ptacek, J., and M. Snyder. 2006. Trends in Genetics 22 (10):545-554.

[88] Ramsey, S., David Orrell, and Hamid Bolouri. 2005. Journal of bioin-
formatics and computational biology 3 (02):415-436.

[89] Rawlings, J. B., and John G Ekerdt. 2002. Chemical reactor analysis
and design fundamentals. Nob Hill Pub.

[90] Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, 1. Si-
mon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, T. L. Volkert, C. J.
Wilson, S. P. Bell, and R. A. Young. 2000. Science 290 (5500):2306—
2309.

http://homepages.inf.ed.ac.uk/s0677975/papers/lbs.pdf
http://homepages.inf.ed.ac.uk/s0677975/papers/lbs.pdf

REFERENCES 353

[91] Sauro, H. M. 2000. In: Hofmeyr, J.-H. S., J. M. Rohwer, and J. L.
Snoep. , (ed.), Animating the Cellular Map: Proceedings of the 9th
International Meeting on BioThermoKinetics, . Stellenbosch University
Press.

[92] Sauro, H. M. 2011a. Enzyme Kinetics for Systems Biology. Ambro-
sius Publishing. First Edition.

[93] Sauro, H. M. 2011b. Enzyme Kinetics for Systems Biology. Ambro-
sius Publishing. 2nd Edition.

[94] Sauro, H. M., and J. Barrett. 1995. Molecular and Cellular Biochem-
istry 145:141-150.

[95] Sauro, H. M., and D. A. Fell. 1991. Mathl. Comput. Modelling
15:15-28.

[96] Sauro, H. M., M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle,
and H. Kitano. 2003. OMICS 7(4):355-372.

[97] Sauro, H. M., and B. N. Kholodenko. 2004. Prog Biophys Mol Biol.
86:5-43.

[98] Seshasayee, A. S. N., P. Bertone, G. M. Fraser, and N.M. Luscombe.
2006. Current Opinion in Microbiology 9 (5):511-519.

[99] Shen-Orr, S. S., R. Milo, S. Mangan, and U. Alon. 2002. Nature
Genetics 31:64-68.

[100] Siegal, M. L., Daniel E L. Promislow, and Aviv Bergman. 2007.
Genetica 129 (1):83-103.

[101] Smith, G. P. 1985. Science 228 (4705):1315-1317.

[102] Straume, M., and ML Johnson. 1992. Methods in enzymology
210:87.

[103] Straume, M., and Michael L Johnson. 2010. Essential Numerical
Computer Methods :55.

[104] Taft, R., and JS Mattick. 2004. Arxiv preprint g-bio.GN/0401020 .

354 REFERENCES

[105] Toledo, F., and Geoffrey M Wahl. 2006. Nat Rev Cancer 6
(12):909-923.

[106] Trafton, A. 2012. http://www.mit.edu/newsoffice/2011/brain-chip-
1115.html.

[107] Uetz, P, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson,
J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart,
A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vi-
jayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg.
2000. Nature 403 (6770):623-627.

[108] Wang, E., R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr,
S.F. Kingsmore, G.P. Schroth, and C.B. Burge. 2008. Nature 456:470-
476.

[109] Wikipedia 2013a. http://en.wikipedia.org/wiki/Analog_computer.
[Online; accessed 4-January-2013].

[110] Wikipedia 2013b. http://en.wikipedia.org/wiki/Antiky-
thera_mechanism. [Online; accessed 4-January-2013].

[111] Wikipedia 2013c. http://en.wikipedia.org/wiki/Cellular_automaton.
[Online; accessed 4-January-2013].

[112] Wikipedia 2013d. http://en.wikipedia.org/wiki/Difference_engine.
[Online; accessed 4-January-2013].

[113] Wikipedia 2013e. http://en.wikipedia.org/wiki/Differential_analyser.
[Online; accessed 4-January-2013].

[114] Wikipedia 2013f. http://en.wikipedia.org/wiki/Emergence. [Online;
accessed 4-January-2013].

[115] Wikipedia 2013g. http://en.wikipedia.org/wiki/Fractal. [Online; ac-
cessed 4-January-2013].

[116] Wikipedia 2013h. http://en.wikipedia.org/wiki/MONIAC-
_Computer. [Online; accessed 4-January-2013].

REFERENCES 355

[117] Wikipedia 2013i. http://en.wikipedia.org/wiki/Neural_networks.
[Online; accessed 4-January-2013].

[118] Wikipedia 2013j. http://en.wikipedia.org/wiki/Rangekeeper. [On-
line; accessed 4-January-2013].

[119] Wikipedia 2013k. http://en.wikipedia.org/wiki/Slide_rule. [Online;
accessed 4-January-2013].

[120] Wikipedia 2013l. http://en.wikipedia.org/wiki/Tide-
_predicting_machine. [Online; accessed 4-January-2013].

[121] Wikipedia 2013m. http://en.wikipedia.org/wiki/V-2a. [Online; ac-
cessed 4-January-2013].

[122] Wilkinson, D. J. 2007. http://www.staff.ncl.ac.uk/d.j.
wilkinson/software/sbml-sh/.

[123] Wilkinson, D. J. 2012. Stochastic Modelling for Systems Biology.
Chapman & Hall/CRC Press, Boca Raton, Florida, 2nd edition.

http://www.staff.ncl.ac.uk/d.j.wilkinson/software/sbml-sh/
http://www.staff.ncl.ac.uk/d.j.wilkinson/software/sbml-sh/

356 REFERENCES

History

1. VERSION: 0.9 (PASI 2013 Edition)

Date: 2013-030-6

Author(s): Herbert M. Sauro

Title: Essentials for Biochemical Modeling
Modification(s): First Edition Release

357

358 REFERENCES

	Preface
	Stoichiometric Networks
	Prologue
	Stoichiometric Networks
	Standard Visualization Notation
	Mass-Balance Equations
	Stoichiometry Matrix
	Reversiblity
	Network Types
	The System Equation
	Jarnac
	Further Reading
	Exercises

	Introduction to Modeling
	Introduction
	Open, Closed, and Isolated Systems
	Models
	Build a Simulation Model
	Types of Model
	Model Variables
	Model Parameters
	Dimensions and Units
	Classification of Models
	Linear and Non-Linear Models
	Linearization
	Approximations
	Example Model
	Further Reading
	Exercises

	Cellular Networks
	Overall Organization
	Network Representation
	Metabolic Networks
	Protein Networks
	Gene Regulatory Networks
	Genome Sizes
	E. coli
	Network Motifs
	Further Reading
	Exercises
	Jarnac Scripts

	How Systems Behave
	System Behavior
	Equilibrium
	Steady State
	Transients
	Setting up a Model in Software
	Effect of Different Kinds of Perturbations
	Sensitivity Analysis
	Robustness and Homeostasis
	Further Reading
	Exercises
	Jarnac Scripts

	Running Simulations
	Introduction
	Numerical Solutions
	Matlab Solvers
	Other Software
	Specialized Software
	Stochastic Kinetics
	Modeling Standards and Databases
	Further Reading
	Exercises

	The Steady State
	Steady State
	Computing the Steady State
	Effect of Different Perturbations
	Stability and Robustness
	Introduction to Stability
	Sensitivity Analysis
	Stability
	Phase Portraits
	Bifurcation Plots
	Further Reading
	Exercises
	Jarnac Scripts

	Stability
	Stability
	Phase Portraits
	Bifurcation Plots
	Further Reading

	Multicompartmental System
	Multicompartment Systems
	Simple Diffusion
	Catalytic Reaction across a Membrane
	Concentrating Cascade
	Further Reading

	Fitting Models
	Introduction
	Optimization Algorithms
	Is the Model a Good Fit?
	Estimating Confidence Intervals
	Case studies
	Analysis of Residuals
	2-Goodness of Fit Test
	Caveats in Data Fitting
	Availability in Modeling Applications
	Using Python to Fit Data
	Further Reading

	Appendix Kinetics in a Nutshell
	Further Reading

	Appendix Enzyme Kinetics in a Nutshell
	Further Reading

	Appendix Math Fundamentals
	Notation
	Short Table of Derivatives
	Logarithms
	Partial Derivatives
	Differential Equations
	Taylor Series
	Total Derivative
	Eigenvalues and Eigenvectors
	Further Reading

	Appendix Statistics Reminder
	Mean
	Deviation
	Standard Error
	Covariance
	Normal Distribution
	Confidence Interval
	Bootstrapping
	Further Reading

	Appendix Introduction to Jarnac
	Quick Start Guide
	Current Directory
	Simple Examples from the Console Window
	Numeric handling
	Type of Data
	Integers
	Floats
	Complex Numbers
	Boolean
	Strings
	Code Types
	Matrices

	Running Script Files
	Commenting Code

	Reaction Network Models
	Initialization of Model Values
	Time Course Simulation
	Applying Perturbations to a Simulation
	Additional Plotting Commands
	Multiple Plots
	SubPlots
	Steady State and Metabolic Control
	Other Model Properties of Interest

	Generating SBML and Matlab Files
	Exercise

	References
	History

